Tìm nghiệm nguyên của phương trình: \(x^2+5y^2-4xy+4x-8y-12=0\)
tìm nghiệm nguyên của phương trình : x^2+5y^2-4xy+4x-8y-12=0
\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)
\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)
Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương
nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra
Tìm nghiệm nguyên của pt \(x^2+5y^2-4xy+4x-8y-12=0\)
*Làm bằng cách sử dụng \(\Delta\) hoặc Δ' giúp e với ạ
PT <=> \(x^2-4x\left(y-1\right)+5y^2-8y-12=0\)
Xét \(\Delta'=\left[-2\left(y-1\right)\right]^2-1.\left(5y^2-8y-12\right)\)
= \(4\left(y^2-2y+1\right)-5y^2+8y+12\)
= \(-y^2+16\)
Để PT có nghiệm <=> \(\Delta'\ge0< =>-y^2+16\ge0\)
<=> \(y^2\le16\) <=> \(-4\le y\le4\)
Mà y nguyên
<=> \(y\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)
Đến đây bn thay y vào PT để tìm x nhé
tìm nghiệm nguyên của phương trình x2+5y2-4xy+4x-4y+3=0
tìm nghiệm nguyên của phương trình : x2-4xy+5y2+10x-22y+26=0
Bạn sửa lại đề đi:
Tìm nghiệm nguyên của phương trình: \(^{x^2-4xy+5y^2+10x-22y+26=0}\)
Tìm nghiệm nguyên của phương trình sau
\(x^2-4xy+5y^2-16=0\)
Ta có: \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Vì \(x;y\in Z\Rightarrow\left(x-2y\right)^2\in Z;y^2\in Z\)
Và \(\left(x-2y\right)^2\ge0,y^2\ge0\)
\(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\)
Ta có các tập nghiệm: \(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\) thì thỏa mãn phương trình
PT \(\Leftrightarrow x^2+\left(-4y\right).x+\left(5y^2-16\right)=0\)
Để PT trên có nghiệm \(\Leftrightarrow\Delta=\left(-4y\right)^2-4\left(5y^2-16\right)\ge0\)
\(\Leftrightarrow16y^2-20y^2+64\ge0\Leftrightarrow-4y^2+64\ge0\Leftrightarrow-4y^2\ge-64\)
\(\Leftrightarrow y^2\le16\Rightarrow-4\le y\le4\)
Đến đây xét các giá trị của y là tìm ra x
\(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\)\(\left(x^2-4xy+4y^2\right)+y^2=16\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Do \(x,y\in Z\Rightarrow\left(x-2y\right)^2\in Z,y^2\in Z,\left(x-2y\right)^2\ge0,y^2\ge0\)
\(\Rightarrow\)\(\orbr{\begin{cases}\left(x-2y\right)^2=0\\y^2=16\end{cases}}\)hoặc \(\orbr{\begin{cases}\left(x-2y\right)^2=16\\y^2=0\end{cases}}\)
Đến đây tự xét các TH ta có cặp nghiệm :
( x , y ) = ( 8 ; 4 ) ; ( -8 ; -4 ) ; ( -4 ; 0 ) Thỏa mãn PT
Giải phương trình nghiệm nguyên: \(x^2-4xy+5y^2-16=0\)
\(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Ta xét các TH:
TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)
tìm x;y trong phương trình nghiệm nguyên sau:
a)x^2+y^2-2.(3x-5y)=11
b)x^2+4y^2=21+6x
c)4x^2+y^2=6x-2xy+9
d)9x^2+8y^2=12(7-x)
tìm x;y trong phương trình nghiệm nguyên sau:
a)x^2+y^2-2.(3x-5y)=11
b)x^2+4y^2=21+6x
c)4x^2+y^2=6x-2xy+9
d)9x^2+8y^2=12(7-x)
giải phương trình nghiệm nguyên
\(2x^2+5y^2-4xy-8y-4x+14=0\)
\(2x^2+5y^2-4xy-8y-4x+14=0\)
\(\Leftrightarrow\left(2x^2+2y^2-4xy\right)+3y^2-8y-4x+14=0\)
\(\Leftrightarrow2\left(x^2+y^2-2xy\right)-4\left(x-y\right)-12y+3y^2+14=0\)
\(\Leftrightarrow2\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+3y^2-12y+12\)
\(\Leftrightarrow2\left(x-y-1\right)^2+3\left(y-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)