Những câu hỏi liên quan
MT
Xem chi tiết
MT
Xem chi tiết
LL
28 tháng 8 2021 lúc 22:31

\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=\dfrac{ab}{\left(a+b\right)^2-2ab-c^2}+\dfrac{bc}{\left(b+c\right)^2-2bc-a^2}+\dfrac{ca}{\left(a+c\right)^2-2ac-b^2}=\dfrac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc}{\left(a+b+c\right)\left(b+c-a\right)-2bc}+\dfrac{ac}{\left(a+b+c\right)\left(a+c-b\right)-2ac}=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ca}{-2ca}=-\dfrac{1}{2}.3=-\dfrac{3}{2}\)

Bình luận (0)
LA
Xem chi tiết
RH
27 tháng 12 2023 lúc 20:44

Đặt \(f\left(x\right)=ax^2+bx+c\).

\(f\left(0\right)=c;f\left(1\right)=a+b+c\)

Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).

Bình luận (0)
DV
Xem chi tiết
BL
Xem chi tiết
NT
15 tháng 3 2018 lúc 23:33

vì a,b,c là 3 số thực khác nhau và khác 0 nên a-b, b-c, a-c khác 0. Do đó:

a2- b= b2- c <=> a2 -b2 =b -c <=>(a-b)(a+b)=b-c => a+b =(b-c)/(a-b)

cmtt ta có b+c=(c-a)/(b-c) ; c+a = (a-b)/(c-a). Như vậy ta tính được P=1

Bình luận (0)
NA
Xem chi tiết
US
Xem chi tiết
H24
4 tháng 11 2018 lúc 18:37

Từ giả thiết a+b+c=abc và a2 = bc => b + c = a- a => b và c là 2 nghiệm của phương trình:

\(x^2-\left(a^3-a\right)x+a^2=0\)   (1)

\(\Delta=\left(a^3-a\right)^2-\left(2a\right)^2=\left(a^3+a\right)\left(a^3-3a\right)=a^2\left(a^2+1\right)\left(a^2-3\right)\)

  vì (1) có nghiệm nên \(\Delta=a^2\left(a^2+1\right)\left(a^2-3\right)\ge0\)

Mà \(a^2>0;a^2+1>0\) nên \(a^2-3\ge0\)hay \(a^2\ge3\)

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 3 2018 lúc 1:53

Bình luận (0)
CL
Xem chi tiết
LV
Xem chi tiết