Tìm a, b, c biết: 4a - 2b +c = 16
a - b +c = 9
a+ b+ c = 7
Tìm a, b, c biết: 4a - 2b +c = 16
a - b +c = 9
a+ b+ c = 7
Tìm các số a,b,c biết
3a=2b;4b=3c
và
a+4b−5c=−30
A.
a=7;b=15;c=24
B.
a=10;b=15;c=20
C.
a=9;b=14;c=22
D.
a=8;b=16;c=25
a/ \(3a=2b;4b=3c\)
=> \(6a=4b=3c\)
=> \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{4b}{12}=\dfrac{5c}{20}=\dfrac{a+4b-5c}{2+12-20}=\dfrac{-30}{-6}=5\)
=> \(\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
=> B
Tìm a,b,c biết:
a²+b²+c² = 4a-2b+6c-14
\(pt\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6c+9\right)=0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=-1\\c=3\end{cases}}\)
ta có \(a^2+b^2+c^2=4a-2b+6b-14\)
\(\Leftrightarrow a^2+b^2+c^2-4a+2b-6c+14=0\)
\(\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6x+9\right)=0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)
Vì \(\left(a-2\right)^2\ge0\forall a\in R\)
\(\left(b+1\right)^2\ge0\forall b\in R\)
\(\left(c-3\right)^2\ge0\forall c\in R\)
Nên \(\hept{\begin{cases}a-2=0\Rightarrow a=2\\b+1=0\Rightarrow\\c-3=0\Rightarrow c=3\end{cases}b=-1}\)
Vậy a=2 ; b=-1 ; c=3
Tìm a,b,c biết:
a^2+b^2+c^2=4a-2b+6c-14
đề bai
<=> \(a^2+b^2+c^2-4a-6c+2b+14=0\)
<=> \(\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6c+9\right)=0\)
<=> \(\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)
mà \(\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2\ge0\)
dấu = xảy ra <=> \(\hept{\begin{cases}a=2\\b=-1\\c=3\end{cases}}\)
vậy ...
a) Tìm a,b biết 4a=3b và a+b=-21
b) Tìm a,b,c biết a/9=b/3=c/2 và a-2b+3c=36
b) Ta có: \(\frac{a}{9}=\frac{b}{3}=\frac{c}{2}.\)
=> \(\frac{a}{9}=\frac{2b}{6}=\frac{3c}{6}\) và \(a-2b+3c=36.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{9}=\frac{2b}{6}=\frac{3c}{6}=\frac{a-2b+3c}{9-6+6}=\frac{36}{9}=4.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{9}=4\Rightarrow a=4.9=36\\\frac{b}{3}=4\Rightarrow b=4.3=12\\\frac{c}{2}=4\Rightarrow c=4.2=8\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(36;12;8\right).\)
Chúc bạn học tốt!
1. cho A=(a-b+c)-(-a-b-c)
a, rút gọn A
b, tính khi a=1,b=-1 ,c=5
bài 2: tìm a biết
a,a+b-c=18 biết b= 10,c=-9
b, 12-a+b+5c=-1 biết b=-7, c=5
c, 1+2b-3a=-9 biết b=-3, c=-7
BÀI 1:
A) A=(a-b+c)-(-a-b-c)
A=a-b+c--a+b+c
A=a--a+b-b+c+c
A=0+0+2c
A=2c
B) A=(a-b+c)-(-a-b-c)
thay số: A=(1--1+5)-(-1--1-5)
A=7--5
A=12
BÀI 2:
a) ta có a+b-c=18
thay số : a+10-(-9)=18
a+19=18
a=18-19
a=-1
b) ta có 12-a+b+5c=-1
thay số: 12-a+(-7)+5.5=-1
12-a+(-7)+25=1
12-a+18=-1
12+18-a=-1
30-a=-1
a=30--1
a=31
c) ta có 1+2b-3a=-9
thay số : 1+2.(-3)-3a=-9
bn NGUYỄN THỊ BÌNH ơi phần C mk đâu thấy có c trong biểu đâu,bn xem lại xem có sai đề bài phần C ko, bảo mk?
1+3.(-2-a)=-9
3.(-2-a)=-9-1=-10
-2-a=-10:3=-10\3
a=-2--10\3
a=4\3
Cho A=(a-b+c)-(-a-b-c)
a, Rút gọn A
Bài giải :
A = ( a - b + c ) - ( -a -b -c )
A = a - b + c + a + b + c
A = ( a + a ) + ( -b + b ) + ( c + c )
A = 2a + 0 + 2c
A = 2a + 2c
Vậy biểu thức A khi rút gọn được 2a + 2c
Cho A=(a-b+c)-(-a-b-c)
a, Rút gọn A
Bài giải :
A = ( a - b + c ) - ( -a -b -c )
A = a - b + c + a + b + c
A = ( a + a ) + ( -b + b ) + ( c + c )
A = 2a + 0 + 2c
A = 2a + 2c
Vậy biểu thức A khi rút gọn được 2a + 2c
Cho A=(a-b+c)-(-a-b-c)
a, Rút gọn A
Bài giải :
A = ( a - b + c ) - ( -a -b -c )
A = a - b + c + a + b + c
A = ( a + a ) + ( -b + b ) + ( c + c )
A = 2a + 0 + 2c
A = 2a + 2c
Vậy biểu thức A khi rút gọn được 2a + 2c
chúc bn hok tốt
Tìm a,b,c biết \(\dfrac{3c-4b}{2}=\dfrac{4a-2c}{3}=\dfrac{2b-3a}{4}\) và c+b-a = -30
a) Tìm 3 số a,b,c biết \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\) và a+b+c=-50
b) tìm 3 số a,b,c biết ab=c ; bc=4a ; ac=9b
Ta có :
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{15a-10b}{25}=\frac{6c-15a}{9}\)
\(=\frac{15a-10b+6c-15a}{25+9}=\frac{6c-10b}{34}=\frac{3c-5b}{17}=\frac{5b-3c}{2}\) = 0
=> a+b+c = 5a = - 50 => a = -10; b = -15 ; c = -25
Cho 3a-2b/4 = 2c-4a/3 = 4b-3c/2
a) CM a,b,c lần lượt 2,3,4
b)Biết 2a-3b+c = 84. Tìm a,b,c