giải pt sau
|5x-8|=0
Giải các PT sau:
a,(5x-4)(4x+6)=0 b,(3,5x-7)(2,1x-6,3)=0
c,(4x-10)(24+5x)=0 d,(x-3)(2x+1)=0
e,(5x-10)(8-2x)=0 f,(9-3x)(15+3x)=0
a) ( 5x - 4)(4x + 6)=0
<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)
Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)
b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0
<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)
Vậy S = \(\left\{2;3\right\}\)
c) ( 4x - 10 )( 24 + 5x ) = 0
<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)
Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
d) ( x - 3 )( 2x + 1 ) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)
e) ( 5x - 10 )( 8 - 2x ) = 0
<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy S = \(\left\{2;4\right\}\)
f) ( 9 - 3x )( 15 + 3x ) = 0
<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{3;-5\right\}\)
Học tốt nhaaa !
cos 5x-sin(3x+pi)=0
=>sin(3x+pi)=cos5x
=>sin(3x+pi)=sin(pi/2-5x)
=>3x+pi=pi/2-5x+k2pi hoặc 3x+pi=pi/2+5x+k2pi
=>8x=-pi/2+k2pi hoặc -2x=-pi/2+k2pi
=>x=-pi/16+kpi/4 hoặc x=pi/4-kpi
Giải pt sau :
3sqrt(5x+1) + 3sqrt(4x+4) - 5x - 9 = 0
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)
giải pt : 3\(\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0\)
GIẢI PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
a, ĐKXĐ:...
\(\sqrt{5x+10}=8-x\\ \Leftrightarrow5x+10=64-16x+x^2\\ \Leftrightarrow x^2-21x+54=0\)
.....
b, ĐKXĐ:...
\(\sqrt{4x^2+x-12}=3x-5\\ \Leftrightarrow4x^2+x-12=9x^2-30x+25\\ \Leftrightarrow5x^2-31x+37=0\)
.....
Dùng hằng đẳng thức giải pt sau:
a) x^3-x^2-x=1/3
b) 5x^3+6x^2+12x+8=0
c)x^3=3x^2-9x+9
giải các PT sau:
(x^2+x-5)(x^2+x+4)=-18
x^3-7x+6=0
(3x^2+10-8)^2=(5x^2-2x+10)^2
a)
Đặt x^2 + x - 5 = t.
Khi đó, pt đã cho trở thành :
t ( t + 9 ) = -18
<=> t^2 + 9t + 18 = 0
<=> ( t + 3 )( t + 6 ) = 0
Giải pt trên, ta được t = -3 và t = -6 là các nghiệm của pt.
+) t = -3 => x^2 + x - 5 = -3
<=> x^2 + x - 2 = 0
<=> ( x + 2 )( x - 1 ) = 0
Giải pt trên, ta được x = -2 ; x = 1 là các nghiệm của pt.
+) t = -6 => x^2 + x - 5 = -6
<=> x^2 + x + 1 = 0
<=> ( x + 1/2 )^2 + 3/4 = 0
=> Pt trên vô nghiệm.
Vậy..........
b)
x^3 - 7x + 6 = 0
<=> ( x^3 + 3x^2 ) - ( 3x^2 + 9x ) + ( 2x + 6 ) = 0
<=> x^2 . ( x + 3 ) - 3x . ( x + 3 ) + 2( x + 3 ) = 0
<=> ( x + 3 ) ( x^2 - 3x + 2 ) = 0
<=> ( x+ 3 )( x - 2 )( x - 1 ) = 0
Giải pt trên, ta được x = -3 ; x= 2 ; x= 1 là các nghiệm của pt.
Vậy..........
c)
( 3x^2 + 10x - 8 )^2 = ( 5x^2 - 2x + 10 )^2
<=> ( 3x^2 + 10x - 8 )^2 - ( 5x^2 - 2x + 10 )^2 = 0
<=> ( 3x^2 + 10x - 8 - 5x^2 + 2x - 10 )( 3x^2 + 10x - 8 + 5x^2 - 2x + 10 ) = 0
<=> ( -2x^2 + 12x - 18 )( 8x^2 + 8x + 2 ) = 0
<=> ( x^2 - 6x + 9 )( 4x^2 + 4x + 1 ) = 0
<=> ( x - 3 )^2 . ( 2x + 1 )^2 = 0.
Giải pt trên, ta được x = 3 và x = -1/2 là các nghiệm của pt.
Vậy..........
Giải pT sau : a.x(4x-1)^2(2x-1)=9 b.(x^2+5x+6)(x^2-11x+30)=180 c.6x^4-5x^3-38x^2-5x+6=0
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)