Tìm đa thức M biết rằng: M + (\(5x^2-2xy\)) = \(6x^2+9xy-y^2\)
c1,tìm x,y số nguyên biết 2xy-x-y=2
c2,tìm đa thức M biết rằng M+(5x^2-2xy)=6x^2+9xy-y^2 tính giá trị của M khi x, y thỏa mãn (2x-5)^2018+(3y+4)^2<0 hoặc =0
tìm đa thức m,n biết
m+(5x^2-2xy)=6x^2+9xy-y6^2
* Thừa một số '' 6 '' thì phải :)
\(m+\left(5^2-2xy\right)=6^2+9xy-y^2\)
\(\rightarrow m+25-2xy=36+9xy-y^2\)
\(\rightarrow m=-y^2+9xy+2xy+36-25\)
\(\rightarrow m=-y^2+11xy+11\)
Tìm đa thức M biết rằng : M + (5x^2 - 2xy) = 6x^2 + 9xy - y^2.
Tính giá trị của M khi x,y thỏa mãn (2x-5)^2012 + (3y+4)^2014 \(\le\)0
Ta có : \(\left(2x-5\right)^{2012}\ge0\forall x\)
\(\left(3y+4\right)^{2014}\ge0\forall y\)
\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\forall x,y\)
Theo bài : \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)
\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}=0\)
\(\rightarrow\left(2x-5\right)^{2012}=0,\left(3y+4\right)^{2014}=0\)
\(\rightarrow2x-5=0,3y+4=0\)
\(\rightarrow x=\frac{5}{2};y=\frac{-4}{3}\)
Tự tìm M nhé bạn
1, M + (5x2-2xy)= 6x2+9xy-y2
M =(6x2+9xy-y2)- (5x2-2xy)
M = 6x2+9xy-y2-5x2+2xy
M = (6x2-5x2)+(9xy+2xy)-y2
M = x2+11xy-y2
* M + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
<=> M = ( 6x2 + 9xy - y2 ) - ( 5x2 - 2xy )
<=> M = 6x2 + 9xy - y2 - 5x2 + 2xy
<=> M = x2 + 11xy - y2
* \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)
Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2012}\ge0\forall x\\\left(3y+4\right)^{2014}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\)
Dấu = xảy ra <=> \(\hept{\begin{cases}\left(2x-5\right)^{2012}=0\\\left(3y+4\right)^{2014}=0\end{cases}}\)
<=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Thay x = 5/2 ; y = -4/3 vào M ta được :
\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)
\(M=\frac{-1159}{36}\)
Vậy M = -1159/36 khi x = 5/2 ; y = -4/3
Tìm đa thức M biết rằng:M+(5x^2-2xy)=6x^2+9xy-y^2.Tính giá trị của M khi x,y thỏa mãn (2x-5)^2018+(3y+4)^2020 <hoặc=0
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\\ \Leftrightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\\ \Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\\ \Leftrightarrow M=\dfrac{25}{4}-11\cdot\dfrac{4}{3}\cdot\dfrac{5}{2}-\dfrac{16}{9}=\dfrac{25}{4}-\dfrac{110}{3}-\dfrac{16}{9}=-\dfrac{1159}{36}\)
Tìm đa thức M biết rằng:M+(5x^2-2xy)=6x^2+9xy-y^2.Tính giá trị của M khi x,y thỏa mãn (2x-5)^2020+(3y+4)^2022 <hoặc=0
M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2
(2x-5)^2020+(3y+4)^2022<=0
=>x=5/2 và y=-4/3
M=25/4+11*5/2*(-4/3)-16/9=-1159/36
tìm đa thức M
a M + (5x^2 - 2xy) = 6x^2 + 9xy - y^2
b (25 x^2y-13xy^2 + y^3)-M= 11 xy^2 - 2y^3
\(a,M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\\ \Rightarrow M=6x^2+9xy-y^2-5x^2+2xy\\ \Rightarrow M=x^2+11xy-y^2\\ b,\left(25x^2y-13xy^2+y^3\right)-M=11xy^2-2y^3\\ \Rightarrow M=25x^2y-13xy^2+y^3-11xy^2+2y^3\\ \Rightarrow M=25x^2y-24xy^2+3y^3\)
tìm đa thức M biết rằng: M+(5x^2-2xy)=6x^2+9xy-y^2
tính M khi x,y thỏa mãn (2x-5)^2012+(3y+4)^2014\(\le\)0
bn nào làm đúng mk sẽ tick 2 tick nhá
Tìm đa thức M biết rằng: \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2.\) .Tính giá trị của M khi x, y thõa mãn: \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\left(\forall x\right)\\\left(3y+4\right)^{2020}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\left(\forall x,y\right)\)
Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\left(\forall x,y\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Khi đó thay vào ta được:
\(M+5\cdot\left(\frac{5}{2}\right)^2-2\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)=6\cdot\left(\frac{5}{2}\right)^2+9\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(\Leftrightarrow M+\frac{455}{12}=\frac{103}{18}\)
\(\Rightarrow M=-\frac{1159}{36}\)
1)Tìm đa thức M biết rằng :M+(5x2 -2xy)=6x2+9xy-y2
2)Tìm GTLN của :B=\(\frac{x^2+y^2+3}{x^2+y^2+2}\)
1)
\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(M+5x^2-2xy=6x^2+9xy-y^2\)
\(M=\left(6x^2+9xy-y^2\right)-\left(5x^2+2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2-2xy\)
\(M=\left(6x^2-5x^2\right)+\left(9xy-2xy\right)-y^2\)
\(M=x^2+7xy-y^2.\)
Chúc em học tốt!