so sánh
1 + 2+2^2+2^3+......+2^30 và B = 23
Bài 1: So sánh các số sau:(so sánh bằng cách nhanh nhất)
a) -17 và 23 b)-1 và 2 c) 2 và 5 d)267 và -1347
36 -48 3 5 7 4 -268 1343
Bài 2: Tính bằng 2 cách:
5 -(1 3-0,4)
2 7
Bài 1:
a) \(\dfrac{-17}{36}\) và \(\dfrac{23}{-48}\)
\(\dfrac{-17}{36}=\dfrac{-17.4}{36.4}=\dfrac{-68}{144}\)
\(\dfrac{23}{-48}=\dfrac{-23}{48}=\dfrac{-23.3}{144.3}=\dfrac{-69}{144}\)
Vì \(\dfrac{-68}{144}>\dfrac{-69}{144}\) nên \(\dfrac{-17}{36}>\dfrac{23}{-48}\)
b) \(\dfrac{-1}{3}\) và \(\dfrac{2}{5}\)
Vì \(\dfrac{-1}{3}\) là số âm mà \(\dfrac{2}{5}\) là số dương nên \(\dfrac{-1}{3}< \dfrac{2}{5}\)
c) \(\dfrac{2}{7}\) và \(\dfrac{5}{4}\)
Vì \(\dfrac{2}{7}< 1\) mà \(\dfrac{5}{4}>1\) nên \(\dfrac{2}{7}< \dfrac{5}{4}\)
d) \(\dfrac{267}{-268}\) và \(\dfrac{-1347}{1343}\)
\(\dfrac{267}{-268}=\dfrac{-267}{268}=\dfrac{-267.449}{268.449}=\dfrac{-119883}{120332}\)
\(\dfrac{-1347}{1343}=\dfrac{-1347.89}{1343.89}=\dfrac{-119883}{119527}\)
Vì \(\dfrac{-119883}{120332}>\dfrac{-119883}{119527}\) nên \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
Bài 2:
\(\dfrac{5}{2}-\left(1\dfrac{3}{7}-0,4\right)=\dfrac{5}{2}-\dfrac{10}{7}-\dfrac{2}{5}=\dfrac{47}{70}\)
So sánh:
a) ( 1 + 2 + 3 + 4 ) 2 và 1 3 + 2 3 + 3 3 + 4 3
b) 19 4 và 16 . 18 . 20 . 22
Câu 1 / so sánh 2 lũy thừa 3^23 và 5^12
Câu 2 / so sánh 2 lũy thừa 3^36 và 2^8.11^4
so sánh 2 lũy thừa 3^4 và 9^3
A=1+2+2^2+2^3+...+2^2017 và B=2^2018-1
16^19 và 8^25
5^23 và 6x5^22
5^36 và 11^24
2a. so sánh 2 PS: 23/28 và 24/27
b. Tính A= 2/1*2 + 2/2*3 + 2/3*4 + ..... + 2/1999*2000
So sánh
a) 3^300+4^300 và 3.24^100
b) 2^23+1/2^28+1 và 2^25+1/2^24+1
So sánh phân số A = 1/42+1/56+1/72+1/90+1/110+1/132 và B = (2/29-2/39+2/49)/(23/29-23/39+23/49)
Ta có A = \(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
= \(\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\)
= \(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
= \(\dfrac{1}{6}-\dfrac{1}{12}=\dfrac{1}{12}\)
B = \(\dfrac{\dfrac{2}{29}-\dfrac{2}{39}+\dfrac{2}{49}}{\dfrac{23}{29}-\dfrac{23}{39}+\dfrac{23}{49}}=\dfrac{2\left(\dfrac{1}{29}-\dfrac{1}{39}+\dfrac{1}{49}\right)}{23\left(\dfrac{1}{29}-\dfrac{1}{39}+\dfrac{1}{49}\right)}=\dfrac{2}{23}\)
Lại có \(\dfrac{2}{23}>\dfrac{2}{24}=\dfrac{1}{12}\) hay A < B
Vậy A < B
So sánh a, ( 1 + 2 + 3 + 4 ) ^ 2 và 1^2 + 2^2 + 3^2 + 4^2 b, 19 ^4 và 16 x 18 x20 x 22 c, 10 ^30 và 2 ^ 100
So sánh a, ( 1 + 2 + 3 + 4 ) ^ 2 và 1^2 + 2^2 + 3^2 + 4^2 b, 19 ^4 và 16 x 18 x20 x 22 c, 10 ^30 và 2 ^ 100
So sánh các số sau, số nào lớn hơn.
a) 5^23 và 6.5^22
7.2^13 và 2^16
21^15 và 27^5.49^8
b) 2^30 + 3^30 + 4^30 và 3.2024^10
a/ 5 ^ 23 và 6. 5^ 22
5^23= 5.5^22
=> 5^23<6.5^22
b/ 7.2 ^ 13 và 2 ^ 16
2^16= 2^3.2^13= 8.2^13
=> 7.2^13<2^16
c/21^ 15 và 27^ 5 . 49 ^ 8
21^ 15=(7.3)^15=3^15.7^15
27^ 5 . 49 ^ 8=27^5.(7^2)^8=27^5.7^16
27^ 5 = 3^5.9^5=3^5.(3^2)^5=3^5.3^10=3^15
vì 3^15.7^15<3^15.7^16
nên 21^15< 27^ 5 . 49 ^ 8