Những câu hỏi liên quan
VK
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
CK
Xem chi tiết
LF
6 tháng 12 2016 lúc 22:11

b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)

Với n=1 (*) đúng

Giả sử (*) đúng với n=k, khi đó ta có

\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)

Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:

\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)

\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Theo nguyên lí quy nạp ta có ĐPCM

Áp dụng vào bài toán ta có:

\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)

 

Bình luận (3)
LF
6 tháng 12 2016 lúc 22:02

a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)

\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)

 

Bình luận (1)
LF
6 tháng 12 2016 lúc 22:12

câu c thì vừa này t vào xem phần hỏi đáp trang toán có bài đăng r` đấy quay lại xem

Bình luận (1)
HN
Xem chi tiết
TA
21 tháng 4 2017 lúc 12:58

1230 nha

Bình luận (0)
HV
1 tháng 5 2018 lúc 11:00
 

B =1.99+2.98+3.97+...+98.2+99.1

Bình luận (0)
VA
18 tháng 9 2018 lúc 21:30

=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99(99-98)

=99.(1+2+3+4+...+98+99)-(2+2.3+3.4+...+97.98+98.99)

=99.(1+99).99/2-98.99.100/3

=99.50.99-98.33.100

=490050-323400

=166650

Bình luận (0)
TL
Xem chi tiết
NN
Xem chi tiết
LD
21 tháng 1 2019 lúc 18:52

Ta có:

\(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\)

\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\dfrac{99+1}{1\cdot99}+\dfrac{97+3}{3\cdot97}+...+\dfrac{1+99}{99\cdot1}}{100}}\)

\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\left(1+\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{3}+...+\dfrac{1}{99}+1\right)}{100}}\)

\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{2\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)}{100}}=\dfrac{1}{\dfrac{2}{100}}=\dfrac{100}{2}=50\)

Bình luận (0)
LD
21 tháng 1 2019 lúc 18:56

\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+...+\dfrac{1}{99}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{1+\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{100}{100}+\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)

Bình luận (0)
NN
Xem chi tiết
ST
28 tháng 5 2017 lúc 11:56

a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)

\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)

Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)

\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)

\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)

\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)

Thay B và C vào A 

\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)

b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)

\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)

\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Thay E vào B

\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

Bình luận (0)
NM
28 tháng 5 2017 lúc 12:03

a)50

b)1/100

tk ủng hộ nha

Bình luận (0)
DL
28 tháng 5 2017 lúc 12:07

a,

\(A=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}}\)

\(A=\frac{\left[1+\frac{1}{99}\right]+\left[\frac{1}{3}+\frac{1}{97}\right]+...+\left[\frac{1}{49}+\frac{1}{51}\right]}{2\left[\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right]}\)

\(A=\frac{\frac{100}{1.99}+\frac{100}{3.97}+\frac{100}{5.95}+...+\frac{100}{99.1}}{2\left[\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right]}\)

\(A=\frac{100\left[\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right]}{2\left[\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right]}=\frac{100}{2}=50\)

b, Ta có:

\(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\left[1+\frac{98}{2}\right]+\left[1+\frac{97}{3}\right]+...+\left[1+\frac{1}{99}\right]+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}=100\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right]\)

Thế vào:

\(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}=\frac{1}{100}\)

Bình luận (0)