Những câu hỏi liên quan
HS
Xem chi tiết
VM
24 tháng 9 2017 lúc 13:58

ta có \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\Rightarrow E\ge17,5\)

dấu = xảy ra <=> \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0,75\\y=1,5\end{cases}}}\)

Bình luận (0)
NM
Xem chi tiết
FA
Xem chi tiết
NN
3 tháng 7 2017 lúc 8:18

Vì : |4x-3| >= 0

       |5y+7,5| >= 0

nên |4x-3|+|5y+7,5|+17,5>= 0+0+17,5

hay E>= 17,5

Dấu " =" xảy ra khi: \(\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\)   <=>\(\hept{\begin{cases}4x=3\\5y=-7,5\end{cases}}\)

                          <=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

Vậy MinE = 17,5 khi (x,y) = (\(\frac{3}{4}\); -1,5)

Bình luận (0)
KK
Xem chi tiết
DT
27 tháng 10 2019 lúc 12:17

FgđNdkkgg

Bình luận (0)
 Khách vãng lai đã xóa
2U
27 tháng 10 2019 lúc 12:20

\(A=|4x-3|+|5y+7,5|+17,5\)

\(|4x-3|\ge0\)

\(|5y+7,5|\ge0\)

\(\Leftrightarrow|4x-3|+|5y+7,5|+17,5\ge17,5\)

Vậy \(MaxA=17,5\)khi \(\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
27 tháng 10 2019 lúc 12:23

Ta có \(\left|4x-3\right|\ge0\)\(\forall x\)

          \(\left|5y+7,5\right|\ge0\forall x\)

=> \(\left|4x-3\right|+\left|5y+7,5\right|\ge0\forall x,y\)

=>\(\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\forall x,y\)

hay \(A\ge17,5\)

\(MinA=17,5\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-\frac{3}{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
LB
26 tháng 10 2015 lúc 12:55

a) /4x - 3/ + /5y+7,5/ >= 0

=> C>= 17,5

=> C min = 17,5 <=> 4x-3 = 0 và 5y + 7,5 =0 <=> x = 3/4 và y = -3/2

b) Áp dụng /A/ = /-A/

=> D = /x-2001/ + /2002-x/

Lại áp dụng /a/ + /b/ >= /a+b/

=> D>= /x-2001+2002-x/ = 1

=> D min = 1 <=> (x - 2001)(2002 - x) >= 0 <=> 2001 <= x <= 2002

Bình luận (0)
KK
Xem chi tiết
KK
Xem chi tiết
DH
Xem chi tiết
DH
19 tháng 7 2017 lúc 8:12

help me !!!hahahahahahahahahaha

Bình luận (0)
MS
19 tháng 7 2017 lúc 9:51

\(\)bài nào có MIN or MAX thì mk làm,mk ko làm thì có nghĩa là ko có nha

\(D=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

\(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|4x-3\right|=0\Rightarrow4x=3\Rightarrow x=\dfrac{3}{4}\\\left|5y+7,5\right|=0\Rightarrow5y=-7,5\Rightarrow y=-1,5\end{matrix}\right.\)

\(\Rightarrow MIN_D=17,5\) khi \(x=\dfrac{3}{4};y=-1,5\)

\(E=4-\left|5x-2\right|-\left|3y+12\right|\)

\(\left\{{}\begin{matrix}\left|5x-2\right|\ge0\\\left|3y+12\right|\ge0\end{matrix}\right.\)

\(\Rightarrow E=4-\left|5x-2\right|-\left|3y+12\right|\le4\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|5x-2\right|=0\Rightarrow5x=2\Rightarrow x=\dfrac{2}{5}\\\left|3y+12\right|=0\Rightarrow3y=-12\Rightarrow y=-4\end{matrix}\right.\)

\(\Rightarrow MAX_E=4\) khi \(x=\dfrac{2}{5};y=-4\)

Bình luận (1)
Xem chi tiết
NH
18 tháng 8 2020 lúc 15:58

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
24 tháng 8 2021 lúc 20:49

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)

Bình luận (0)
 Khách vãng lai đã xóa