\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm các chữ số a , b , c khác 0 thỏa mãn : \(\overline{abbc}\) = \(\overline{ab}\) . \(\overline{ac}\) . 7
\(\overline{ABBC}=7.\overline{AB}.\overline{AC}\)
TÌM A,B,C
Tìm các chữ số a , b ,c thỏa mãn : \(\overline{abbc=\overline{ab}.\overline{ac}.7}\)
Gọi : ab = m ; ac = n ; bc = d ( m,n,d \(\inℕ^∗\))
Ta có : 100m + d = m . n . 7
=> \(\frac{100m+d}{m}=n.7\)(1)
Vì 7n là số tự nhiên => \(100m+d⋮m\Rightarrow d⋮m\Rightarrow d=mk\left(k\inℕ^∗,k< 10\right)\)
Thay vào (1) ta được : \(\frac{100m+mk}{m}=7n\Rightarrow\frac{m\left(100+k\right)}{m}=7n\Rightarrow100+k=7n\)
Vì \(100< 100+k< 110\)mà \(7n⋮7\Rightarrow100+k⋮7\Rightarrow100+k=105\Rightarrow n=\frac{105}{7}=15\)
=> 1bb5 = 1b . 105
=> 100. 1b + b5 =1b . 100 + 1b . 5
=> b5 = 1b . 5 => 10b + 5 = 50 + 5b => 5b = 45 => b = 9
Vậy a = 1 ; b = 9 và c = 5
Tìm các chữ số a,b,c thỏa mãn : \(\overline{abbc}=7.\overline{ab}.\overline{ac}\)
abbc=100.ab+bc
ab.ac.7-100.ab=bc
ab.(ac.7-100)=bc
⇒⇒ ac.7-100 < 10
⇒⇒ ac<16
⇒⇒ a=1
Ma ac.7-100=1c.7-100=c.7+70-100=c.7-30<10
⇒⇒ c.7<40
⇒⇒ c<6
va c.7-30>0
⇒⇒ c.7 >30
⇒⇒ c>4
⇒⇒ c=5
Ma 1c.7-100=15.7-100=5
⇒⇒ ab.5=bc
Hay 1b.5=b5
⇒⇒ 50+5b=10.b+5
⇒⇒ 5.b=45
⇒⇒ b=9
Vay a=1;b=9;c=5
Tìm các số a,b,c ≠ 0 thoả \(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
abbc=100.ab+bc
ab.ac.7-100.ab=bc
ab.(ac.7-100)=bc
⇒⇒ ac.7-100 < 10
⇒⇒ ac<16
⇒⇒ a=1
Ma ac.7-100=1c.7-100=c.7+70-100=c.7-30<10
⇒⇒ c.7<40
⇒⇒ c<6
va c.7-30>0
⇒⇒ c.7 >30
⇒⇒ c>4
⇒⇒ c=5
Ma 1c.7-100=15.7-100=5
⇒⇒ ab.5=bc
Hay 1b.5=b5
⇒⇒ 50+5b=10.b+5
⇒⇒ 5.b=45
⇒⇒ b=9
Vay a=1;b=9;c=5
cảm ơn hen
Tìm các chữ số a,b,c khác 0 thõa mãn :
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
Tìm các chữ số a,b,c khác 0 thõa mãn :
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\Leftrightarrow100\times\overline{ab}+\overline{bc}=7\times\overline{ab}\times\overline{ac}\)
\(\Leftrightarrow\overline{ab}\times\left(7\times\overline{ac}-100\right)=\overline{bc}\)
\(7\times\overline{ac}-100=\frac{\overline{bc}}{\overline{ab}}\)
Vì \(0< \frac{\overline{bc}}{\overline{ab}}< 10\Rightarrow0< 7\times\overline{ac}-100< 10\)
\(\Rightarrow100< 7\times\overline{ac}< 110\)
\(14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\)
\(\Rightarrow\overline{ac}=15\Rightarrow\overline{a}=1,\overline{c}=5\)
Thay \(\overline{ac}=15\)ta được: \(\overline{1bb5}=15\times\overline{1b}\times7\)
\(\Rightarrow5\times\overline{b}=45\Rightarrow\overline{b}=\frac{45}{5}=9\)
Vậy \(a=1,b=9,c=5\ne0\left(tm\right)\)
Tìm số nguyên tố \(\overline{abcd}\)sao cho \(\overline{ab}\)và\(\overline{ac}\)là các số nguyên tố, biết \(\overline{abbc}\)=\(\overline{ab}\).\(\overline{ac}\).7
Ai trả lời được câu này đảm bảo được hojc24h tích đúng.
bạn có thể tham khảo vài đáp án trên onlinemath