Chứng minh rằng n (n-1)chia hết cho 2 với mọi số nguyên n
Giải giúp mình nha !
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!
Chứng minh rằng với mọi số nguyên dương n thì: (n+1)(n+2)...(n+n) chia hết cho 2n.
Giúp mình giải bài này, mình đang cần gấp. Cảm ơn!
......................?
mik ko biết
mong bn thông cảm
nha ................
Chứng minh rằng n(n+1)(2n+1) chia hết cho 6 với mọi số nguyên n
giúp mình với ai giải ra đầy đủ mình cho LIKE,thật đó
n(n + 1)(2n + 1) chia hết cho 6
n(n + 1)(2n + 1) chia hết cho 2 và 3
n(n + 1) là tích 2 số tự nhiên liên tiếp
Nên n(n + 1) chia hết cho 2 < = > n(n + 1)(2n + 1) chia hết cho 2
n chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 1 => 2n + 1 chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 2 => n + 1 chia hết cho 3 => Tích chia hết cho 3
< = > n(n + 1)(2n + 1) chia hết cho 3
UCLN(2,3) = 1
Do đó n(n + 1)(2n + 1) chia hết cho 2.3 = 6
=> ĐPCM
Chứng minh rằng:n^2*(n+1)+2n*(n+1) luôn chia hết cho 6 với mọi số nguyên n.
giải giúp mình với, cảm ơn nhiều.
Ta có : \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n là số nguyên , n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 => n(n+1)(n+2) chia hêt cho 2x3 = 6
Hay \(n^2\left(n+1\right)+2n\left(n+1\right)\)luôn chia hết cho 6 với mọi số nguyên n.
chứng minh rằng n.(n+13) chia hết cho 2 với mọi số tự nhiên n. giải giúp mình ik
Ta có vì n\(\in\)N
+) TH1 :n là số lẻ=>n+13\(⋮\)2=>n.(n+13)\(⋮\)2
+)TH2 :n là số chẵn =>n\(⋮\)2=>n.(n+13)\(⋮\)2
vậy n.(n+13)\(⋮\)2 với \(\forall\)n\(\in\)N
chứng minh rằng với mọi số nguyên dương n thì 7^n+2+8^2n+1 chia hết cho 19
ai giúp mình với
Chứng minh rằng : n( n + 1)(n + 2 ) ( n + 3) chia hết cho 3 và 8 với mọi số nguyên n.
Mk cần gấp lắm ạ
Bạn nào giúp đc thì mk tick nha
Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8
Giúp mình với ai làm được tick lun !!!
1/Tìm n thuộc N và n>3.Chứng minh rằng nếu 2n=10a+b (0<b<10) thì a.b luôn chia hết cho 6.
2/Chứng minh rằng :A=10n+18n-1 chia hết cho 81 (n là số tự nhiên)\
Giải cách lớp 6 nha mọi người !!!!!
Chứng minh rằng số A=(n+1).(3.n+2) luôn chia hết cho 2 với mọi số tự nhiên n (.là dấu nhân)
Giúp mình lẹ nha mình đang cần gấp .Mình cảm ơn trước nha
Giúp mình với: chứng minh rằng với mọi số nguyên tố n, ta có:
a)n^5-5n^3+4n chia hết cho 120
b) n^3-3n^2-n+3 chia hết cho 48 với mọi n lẻ?
\(a,n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)