Phân tích đa thức thành nhân tử:
8x2+2x-15
phân tích đa thức thành nhân tử (2x-y)(4x2-4xy+y2)-8x2(x-y)
\(\left(2x-y\right)\left(4x^2-4xy+y^2\right)-8x^2\left(x-y\right)\)
\(=\left(2x-y\right)^3-8x^2\left(x-y\right)\)
\(=8x^3-12x^2y+6xy^2-y^3-8x^3+8x^2y\)
\(=-4x^2y-6xy^2-y^3\)
\(=-y\left(4x^2+6xy+y^2\right)\)
phân tích đa thức thành nhân tử :-8x2+5x+3
-8x2 + 5x + 3
<=> -8x2 + 8x - 3x + 3
<=> 8x(x - 1) - 3(x - 1)
<=> (8x - 3)(x - 1)
-8x2+5x+3
=−1(8𝑥2−5𝑥−3)
=−1(8𝑥2+3𝑥−8𝑥−3)
=−1(𝑥(8𝑥+3)−1(8𝑥+3))=−1(𝑥−1)(8𝑥+3)\(=-8x^2+8x-3x+3\\ =-8x\left(x-1\right)-3\left(x-1\right)\\ =\left(-8x-3\right)\left(x-1\right)\)
phân tích đa thức thành nhân tử
8x2 +b4x + 4
helpp
\(8x^2+4x+4=4\left(2x^2+x+1\right)\)
phân tích đa thức thành nhân thức
a, x2 - 2x + x - 2
b, 8x2 + 4x + 4
c, x3 + 4x2 + 2x4
\(a,=x\left(x-2\right)+\left(x-2\right)=\left(x+1\right)\left(x-2\right)\\ b,=4\left(2x^2+x+1\right)\\ c,=x^2\left(2x^2+x+4\right)\)
bài 1 Phân tích đa thức thành nhân tử ( bằng kĩ thuật bổ sung hằng đẳng thức )
1, 2x2 - 3x - 2
2,4x2 - 7x - 2
3, 6x2 + 7x - 3
bài 2 phân tích thành nhân tử ( bằng kĩ thuật tách hạng tử )
1, 3x2 + 7x - 6
2, 8x2 - 2x - 3
3, -8x2 + 5x + 3
4, -10x2 + 11x + 6
\(1,2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
\(2,4x^2-7x-2\)
\(=4x^2-8x+x-2\)
\(=4x\left(x-2\right)+x-2\)
\(\left(4x+1\right)\left(x-2\right)\)
Phân tích đa thức thành nhân tử:
a)x3-8x2+16x
b)x2+4y2+2x-4y-4xy-24
c)x4+x3-x2-2x-2
`a)x^3-8x^2+16x`
`=x(x^2-8x+16)`
`=x(x-4)^2`
`b)x^2+4y^2+2x-4y-4xy-24`
`=(x-2y)^2+2(x-2y)-24`
`=(x-2y)^2-4(x-2y)+6(x-2y)-24`
`=(x-2y-4)(x-2y+6)`
`c)x^4+x^3-x^2-2x-2`
`=x^4-2x^2+x^3-2x+x^2-2`
`=x^2(x^2-2)+x(x^2-2)+x^2-2`
`=(x^2-2)(x^2+x+1)`
Phân tích đa thức thành nhân tử:
a) x2-36y2-x+6y
b) 16x-8x2+x3
c) 2x2-4xy+2y2-18
d) 3x2-7x-10
e) x4-x2-30
f) x2-xy-2y2
g) x4-13x2y2+4y4
h) (x2-2x)2-2(x2-2x)-3
a) \(=\left(x+6y\right)\left(x-6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x-6y-1\right)\)
b) \(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c) \(=2\left(x-y\right)^2-18\)
\(=2\left[\left(x-y\right)^2-3^2\right]\)
\(=2\left(x-y+3\right)\left(x-y-3\right)\)
a: \(x^2-36y^2-x+6y\)
\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x+6y-1\right)\)
b: \(x^3-8x^2+16x\)
\(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c: \(2x^2-4xy+2y^2-18\)
\(=2\left(x^2-2xy+y^2-9\right)\)
\(=2\left(x-y-3\right)\left(x-y+3\right)\)
d: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
e: Ta có: \(x^4-x^2-30\)
\(=x^4-6x^2+5x^2-30\)
\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)
\(=\left(x^2-6\right)\left(x^2+5\right)\)
f: Ta có: \(x^2-xy-2y^2\)
\(=x^2-2xy+xy-2y^2\)
\(=x\left(x-2y\right)+y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+y\right)\)
g: Ta có: \(x^4-13x^2y^2+4y^4\)
\(=x^4-4x^2y^2+4y^4-9x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)
\(=\left(x^2-3xy-2y^2\right)\left(x^2+3xy-2y^2\right)\)
Phân tích đa thức thành nhân tử: (mình cần gấp ạ :3)
a) x2-36y2-x+6y
b) 16x-8x2+x3
c) 2x2-4xy+2y2-18
d) 3x2-7x-10
e) x4-x2-30
f) x2-xy-2y2
g) x4-13x2y2+4y4
h) (x2-2x)2-2(x2-2x)-3
a: Ta có: \(x^2-36y^2-x+6y\)
\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)
\(=\left(x-6y\right)\left(x+6y-1\right)\)
b: Ta có: \(16x-8x^2+x^3\)
\(=x\left(x^2-8x+16\right)\)
\(=x\left(x-4\right)^2\)
c: Ta có: \(2x^2-4xy+2y^2-18\)
\(=2\left(x^2-2xy+y^2-9\right)\)
\(=2\cdot\left[\left(x-y\right)^2-9\right]\)
\(=2\left(x-y-3\right)\left(x-y+3\right)\)
d: Ta có: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
e: Ta có: \(x^4-x^2-30\)
\(=x^4-6x^2+5x^2-30\)
\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)
\(=\left(x^2-6\right)\left(x^2+5\right)\)
f: Ta có: \(x^2-xy-2y^2\)
\(=x^2-2xy+xy-2y^2\)
\(=x\left(x-2y\right)+y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+y\right)\)
g: Ta có: \(x^4-13x^2y^2+4y^4\)
\(=x^4-4x^2y^2+4y^4-9x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)
\(=\left(x^2-3xy-2y^2\right)\left(x^2-3xy+2y^2\right)\)
\(=\left(x^2-3xy-2y^2\right)\left(x^2-xy-2xy+2y^2\right)\)
\(=\left[x\left(x-y\right)-2y\left(x-y\right)\right]\left(x^2-3xy-2y^2\right)\)
\(=\left(x-y\right)\left(x-2y\right)\left(x^2-3xy-2y^2\right)\)
h: Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3\)
\(=\left(x^2-2x\right)^2-3\left(x^2-2x\right)+\left(x^2-2x\right)-3\)
\(=\left(x^2-2x\right)\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=\left(x^2-2x-3\right)\left(x^2-2x+1\right)\)
\(=\left(x-3\right)\left(x+1\right)\cdot\left(x-1\right)^2\)
Phân tích đa thức thành nhân tử: -x2-2x+15
\(-\left(x^2+2x-15\right)=-\left(x^2+2x+1-16\right)=16-\left(x+1\right)^2=\left(17+x\right)\left(15-x\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
x^2 - 2x - 15
\(x^2-2x-15\)
\(\Leftrightarrow\)\(x^2-5x+3x-15\)
\(\Leftrightarrow\)\(\left(x^2-5x\right)+\left(3x-15\right)\)
\(\Leftrightarrow\)\(x\left(x-5\right)+3\left(x-5\right)\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x+3\right)\)
P/s:#Học Tốt#