cho a,b,c la ba so duong . CMR:a/b+c + b/a+c + c/a+b lon hon hoac bang 3/2
cho ba so duong 0 nho hon hoac bang a nho hon hoac hoa bang b nho hon hoac bang c nho hon hoac bang 1 . chung minh a/bc+1+b/ac+1+c/ab+1nho hon hoac bang 2
goi a,b,c la cac canh cua 1 tam giac co 3 duong cao tuong ung la ha,hb,hc. cmr (a+b+c)^2/ha^2+hb^2+hc^2 lon hon hoac bang 4
1. cho 4 stn a lon hon hoac bang b, b lon hon hoac bang c, clon hon hoac bang d.
CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)
2. CM: co the tim dc 1 stn k sao cho: (1997^k)-1 chia het cho 10^4
3. tong cac chu so cua 1 so chinh phuong co the bang 1995 dc k?
4. tong cua 1995 stn khac 0 dung bang 1995. Hoi UCLN cua chung la bao nhieu?
đề này sai bét .ngồi đến năm sau cũng trả giải được
cau 1 ,cho m,n thuoc n va p la so nguyen to thoa man p/m-1=m+n/p
CMRp^2=n+2
cau 2,cho a,b,c thoa man a+b+c=0 CMRab+bc+ca be hon hoac bang 0
cau 3,bay gio la 4 gio 10 phut hoi sau it nhat bao lau thi hai kim dong ho nam doi dien nhau tren mot duong thang
cau 4,so 2^100 viet trong he thap phan tao thanh 1 so hoi so do co bao nhieu chu so
cau 5,cho a,b,c la so do 3 canh cua mot tam giac vuong voi c la so do canh huyen CMRa^2n+b^2n be hon hoac bang c^2n (n la so tu nhien lon hon 0 )
cho cac so thuc duong thoa man a+b+c=3.cmr:
(a2+ab2/b2+a+b)+(b2+bc2/c2+b+c)+(c2+ca2/a2+c+a) lon hon hoac bang 2
Cho cac so duong abcd a+b+c+d =4.cm1/ab+1/cd+1/bc+1/da lon hon hoac bang a2+b2+c2+d2
cho ba so a,b,c thoa man 0be honhoac bang a be hon hoac bang b+1 be hon hoac bang c+2 va a+b+c=1 tim gia tri nho nhat cua c
cmr : a^2/b^2 +b^2/c^2+c^2/a^2 luon luon lon hon hoac bang c/b+ b/a+ a/c voi a,b,c lon hon 0
cho a,b,c la 3 canh cua mot tam giac cmr
A=\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
lon hon hoac bang 3
làm ơn giúp tui với
đặt b+c-a=x,a+c-b=y,a+b-c=z thì x,y,z>0 do a,b,c>0
=>x+y+z=a+b+c
có a=(y+z)/2 , b=(z+x)/2 ,c=(x+y)/2
A=(y+z)/2x + (z+x)/2y + (x+y)/2z =1/2[(x/y+y/x)+(y/z+z/y)+(x/z+z/x)
Áp dụng bđt cosi : x/y+y/x >= 2,y/z+z/y >= 2,z/x+x/z >= 2
=>A >= 1/2.6=3 (đpcm)
Dấu "=" xảy ra <=> x=y=z<=>b+c-a=a+c-b=a+b-c<=>a=b=c <=> tam giác đó là tam gíac đều
Áp dụng bđt Cauchy-Schawrz dạng Engel ta có:
A = a^2/ab+ac-a^2 + b^2/ab+bc-b^2 + c^2/ac+bc-c^2
A \(\ge\)(a+b+c)^2/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)a^2+b^2+c^2+2.(ab+bc+ca)/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)2.(ab+bc+ca)-(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2) + 2.(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)1 + 2.(a^2+b^2+c^2)/2.(a^2+b^2+c^2)-(a^2+b^2+c^2)
A \(\ge\) 1 + 2 = 3 (đpcm)
Dấu "=" xảy ra khi a = b = c