Tìm ba số thực biết:\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\) và \(x^{2017}-y^{2018}=0\).
cho x,y,z ≠0 và đôi một khác nhau thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). . CMR: \(\left(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)
CMR với x, y, z khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì hai trong ba số x, y, z đối nhau
Áp dụng chứng minh : \(\dfrac{1}{x^{2018}}+\dfrac{1}{y^{2018}}+\dfrac{1}{z^{2018}}=\dfrac{1}{x^{2018}+y^{2018}+z^{2018}}\)
tìm x, y, z, biết \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)và x2017-y2018=0
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\\ \Rightarrow\left(\dfrac{x}{y}\right)^3=\dfrac{x}{y}.\dfrac{y}{z}.\dfrac{z}{x}=1\\ \Rightarrow\dfrac{x}{y}=1\\ \Rightarrow x=y\\ \Rightarrow y^{2017}-y^{2018}=0\\ \Rightarrow y^{2017}\left(1-y\right)=0\\ \Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)
Vì \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\Rightarrow\left(\dfrac{x}{y}\right)^3=1\Leftrightarrow\dfrac{x}{y}=1\Rightarrow x=y\)
Mà \(x^{2017}-y^{2018}=1\Rightarrow y^{2017}\left(1-y\right)=1\)
\(\Rightarrow\left\{{}\begin{matrix}y^{2017}=1\\1-y=1\end{matrix}\right.\Rightarrow y=\left\{{}\begin{matrix}1\\0\end{matrix}\right.\)
Mà x = y
\(\Rightarrow x=\left\{{}\begin{matrix}1\\0\end{matrix}\right.\)
B2 :
a. Cho đa thức f(x) = ax2 + 2bx + c. Biết 13a + 2b + 2c = 0. CMR : f(2).f(-3) \(\le0\)
b. Cho x,y,z là các số thực thỏa mãn \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Tính giá trị của A = 2018.x + y2017 + z2017
Help me !!
Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)
Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)
=>y+z=\(\dfrac{1}{2}\)-x
Tương tự, ta có được:
x+z=\(\dfrac{1}{2}-y\)
x+y=\(\dfrac{1}{2}-z\)
Thay các kết quả vừa tìm được, ta có:
\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)
=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)
Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:
A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)
=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)
=>A=1009+0
=>A=1009
Vậy giá trị của biểu thức A là 1009
Tìm ba số thực x, y, z biết :
x/y=y/z=z/x và x^2017- y^2018=0
Cho ba số thực dương x, y, z thỏa mãn: xy+yz+zx=2017. chứng minh : \(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{3}{2}\)
Ta có:\(\sqrt{\dfrac{yz}{x^2+2017}}=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\dfrac{y}{x+y}\cdot\dfrac{z}{x+z}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\)
Tương tự ta có:\(\sqrt{\dfrac{zx}{y^2+2017}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{z}{y+z}}{2}\)
\(\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)
Cộng vế với vế ta có:
\(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\)
\(\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}+\dfrac{z}{z+y}+\dfrac{x}{x+y}+\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)
\(=\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}}{2}=\dfrac{1+1+1}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{2017}}{\sqrt{3}}\)
cho 3 số x,y,z thỏa \(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}\)
CM: 4(x-y)(y-z)=(z-x)^2
\(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}=k\\ \Rightarrow\left\{{}\begin{matrix}x=2017k\\y=2018k\\z=2019k\end{matrix}\right.\)
\(4\left(x-y\right)\left(y-z\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)=4\left(-k\right)\left(-k\right)=4k^2=\left(2k\right)^2=\left(2019k-2017k\right)^2=\left(z-x\right)^2\left(ĐPCM\right)\)
Tìm x, y, z
\(\dfrac{x+y+2017}{z}=\dfrac{y+z-2018}{x}=\dfrac{z+x+1}{y}=\dfrac{2}{x+y+z}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x+y+2017}{z}=\dfrac{y+z-2018}{x}=\dfrac{z+x+1}{y}=\dfrac{x+y+2017+y+z-2018+z+x+1}{z+x+y}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{z+x+1}{y}=\dfrac{2}{x+y+z};\dfrac{z+x+1}{y}=2\\ \Rightarrow\dfrac{2}{x+y+z}=2\\ \Rightarrow x+y+z=1\)
\(\left\{{}\begin{matrix}\dfrac{x+y+2017}{z}=2\\\dfrac{y+z-2018}{x}=2\\\dfrac{z+x+1}{y}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+2017=2z\\y+z-2018=2x\\z+x+1=2y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+z=3z-2017\\y+z+x=3x+2018\\z+x+y=3y-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z-2017=1\\3x+2018=1\\3y-1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z=2018\\3x=-2017\\3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{2018}{3}\\x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\\z=\dfrac{2018}{3}\end{matrix}\right.\)
Cho x,y,z khác 0 và x+y+z khác 0. CM nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì \(\dfrac{1}{x^{2017}}+\dfrac{1}{y^{2017}}+\dfrac{1}{z^{2017}}=\dfrac{1}{x^{2017}+y^{2017}+z^{2017}}\)
Chào bạn
bạn nhân chéo lên rồi tách ra thì bạn sẽ có
1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0
Đến đây thì dễ rồi