a,Cho các số tự nhiên a,b,c. Chứng minh rằng (a-b)(b-c)(c-a) chia hết cho 2
BÀI 1: CHỨNG MINH RẰNG 4 SỐ TỰ NHIÊN BẤT KỲ BAO GIỜ CŨNG CÓ HIỆU HAI SỐ CHIA HẾT CHO 3
BÀI 2: CHO 3 SỐ TỰ NHIÊN a,b và c.Trong đó a và b chia cho 5 dư 3 còn c chia cho 5 dư 2
a CHỨNG MINH RẰNG MỖI TỔNG HOẶC HIỆU a+b+c hoặc a+c-b;a-b chia hết cho 5
b Mỗi tổng hoặc hiệu a+b+c; a+b-c ; a+c-b có chia hết cho 5 không
Bài 3 : Chứng minh rằng một số tự nhiên được viết bằng toàn chữ số 4 thì không chia hết cho 8
Bài 4: Tìm 2 số tự nhiên khác 0 biết tích của 2 số gấp 2 lần tổng của chúng
Bài 5:Cho a và b là các số tự nhiên khác 0 và a>2;b>2 . Chứng minh rằng axb > a+b
Làm nhanh trong ngày hôm nay và ngày mai hộ mình nha
trân thành cảm ơn
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ; a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2) chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên)
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$
`2A - A = - 1 + 2^{42}`$\\$
hay `A = -1 + 2^{42}`$\\$
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ; a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2) chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên)
Cho a,b,c là các số tự nhiên khác 0 và a+2.b+3.c chia hết cho 7. Chứng minh rằng: 17a+13b+9c chia hết cho 7
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ;
a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2.chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên
Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2 = c^2 thì abc chia hết cho 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
Rồi suy ra abc chia hêt cho 3.4.5 = 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
suy ra abc chia hêt cho 3.4.5 = 60
cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=2015. chứng minh rằng tích abc chia hết cho 3 nhưng không chia hết cho 12
Cho a , b là các số tự nhiên. Khi chia hết cho 12 dư 7; c là số tự nhiên khi chia cho 12 dư 5
Chứng minh rằng: a + c chia hết cho 12 ; b + c chia hết cho 12 ; a - b chia hết cho 12
cho a,b,c,d,e là số tự nhiên, chứng minh rằng: tích (a+b)(b+c)(c+d)(d+e)(e+a) chia hết cho 2
Lời giải:
Giả sử tích trên lẻ. Khi đó:
$a+b, b+c, c+d, d+e, e+a$ lẻ
$\Rightarrow (a+b)+(b+c)+(c+d)+(d+e)+(e+a)$ lẻ (tổng của 5 số lẻ là 1 số lẻ)
$\Rightarrow 2(a+b+c+d+e)$ lẻ (vô lý)
Do đó điều giả sử là sai. Tức là tích $(a+b)(b+c)(c+d)(d+e)(e+a)$ chẵn.