tim x thuoc z biet |x | - (-2) = -1
tim x thuoc Z biet x^3-x^2+x-1=0
tim x thuoc z ,biet x+(x+1)+(x+2) +...+(x+30)=1240
có x+(x+1)+(x+2)+....+(x+30) = 1240
x+x+1+x+2+......+x+30 = 1240
(x+x+x+...+x) + ( 1+ 2+....+30) = 1240
31 số x
31.x + ( 30 +1) . 30 : 2 = 1240
31.x + 465 = 1240
31.x = 1240 - 465
31.x = 775
x = 775 :31
x= 25
Vậy x=25
Tim x, y thuoc Z biet : | x-2| + (x-y+1)^2 =0
Có 2 Th | x-2| , (x-y+1)^2 =0
| x-2| , (x-y+1)^2 là hai số đối ; lx-2/ nguyên dương => ( x - y + 1 )^2 là số nguyên âm
TH1 | x-2| , (x-y+1)^2 =0
=> x = 2 để /x-2/ = 0
thay vào bên kia ta có : ( 2 - y + 1 ) ^2 = 0 => 2 - y + 1 = 0 => 3 - y = 0 => y = 3
TH2 : Tự xét nha bn
tim x thuoc Z biet :
(x-1)^2 =(x-3)^4
HELP ME:0!!
\(\left(x-1\right)^2=\left(x-3\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: ...
(x-1)^2 =(x-3)^4=\(\left\{{}\begin{matrix}1+1\\2+2\\3+3\\4+4\end{matrix}\right.=2+4+6+8=\sqrt[]{251234=\Sigma\dfrac{2}{2}22\dfrac{2}{2}}\max\limits_{212}=\dfrac{21}{23}2123=\sum\limits1^{ }_{ }\text{(x-1)^2 =x=}\sum1\)
Bổ sung cho @ Huỳnh Thanh Phong.
(- \(x^2\) + 7\(x\) - 10).(\(x^2\) - 5\(x\) + 8) = 0
(- \(x^2\) + 5\(x\) + 2\(x\) - 10).(\(x^2\) - \(\dfrac{5}{2}\)\(x\) - \(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{7}{4}\)) = 0
[(- \(x^2\) + 5\(x\)) + (2\(x\) - 10)].[(\(x^2\) - \(\dfrac{5}{2}\)\(x\)) - (\(\dfrac{5}{2}\)\(x\) - \(\dfrac{25}{4}\)) + \(\dfrac{7}{4}\)] = 0
[ -\(x\)(\(x\) - 5) + 2.(\(x\) - 5)]. [\(x\)(\(x\) - \(\dfrac{5}{2}\)) - \(\dfrac{5}{2}\).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x-\dfrac{5}{2}\)).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\)] = 0 (1)
Vì (\(x\) - \(\dfrac{5}{2}\))2 ≥ 0 ⇒ (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\) ≥ \(\dfrac{7}{4}\) (2)
Kết hợp (1) và (2) ta có:
\(\left[{}\begin{matrix}x-5=0\\-x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy \(x\in\) {2; 5}
tim x thuoc z biet /x+1/ +/x-2/+/x+7/=5x-10
tim x thuoc z biet 1+2+3+...+x=210
vì sao lại bằng 20
Nguyễn Trần Thành Đạt không biết làm copy Dark Killer
tim x thuoc z biet /x+1/ +/x-2/+/x+7/=5x-10
tim x thuoc z biet x+5:x-2
x + 5 chia hết cho x - 2
=> x + 5 = x - 2 + 7
ta có : x - 2 chia hết cho x - 2 nên để x + 5 chia hết cho x - 2 thì 7 phải chia hết cho x - 2
=> x - 2 \(\in\)Ư ( 7 ) = { 1 ; 7 ; -1 ; -7 }
Lập bảng ta có :
x - 2 | 1 | 7 | -1 | -7 |
x | 3 | 9 | 1 | 5 |
Vậy x = { 3 ; 9 ; 1 ; 5 }
tim x thuoc z biet
a,1/(1×2) + 1/(2×3) + ... + 2/(x(x+1)) = 2005/2010
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}=\frac{2005}{2010}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{401}{402}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{401}{402}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{401}{402}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{402}\)
\(\Leftrightarrow x+1=402\Rightarrow x=401\)