Chứng tỏ rằng tổng sau không phải là tổng chính phương
A= ¯¯¯¯¯¯¯¯abc+¯¯¯¯¯¯¯¯bca+¯¯¯¯¯¯¯¯cab
Chứng tỏ tổng sau không phải là số chính phương A=abc+bca+cab
Chứng tỏ rằng tổng sau không là số chính phương:
A = abc + bca + cab
mình biết làm như vì lý do ngại giải quá nên bạn thông cảm vào đây:GIÚP TÔI GIẢI TOÁn
Để A = abc + bca + cab = 111(a + b + c) = 3.37(a + b + c)
Để A là số chính phương thì a + b + c chia hết cho 3.37
nhưng 3<a + b + c>27 nên a + b + c không chia hết cho 37
Vậy A không là số chính phương.
Chứng tỏ rằng tổng sau ko là số chính phương : A = abc+bca+cab
A=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương A
A=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương A
Hok tốt !
Chứng tỏ rằng tổng sau không là số chính phương: A= abc+bca+cab ( mỗi số có dấu liên kết trên đầu )
Ta có:
A=abc+bca+cab = (100a+10b+c) + (100b+10c+a)+(100c+10a+b)
=111a+111b+111c
=111(a+b+c)
Để A là số chính phương thì suy ra a+b+c bé nhất phải bằng 111.
Mà a;b;c là số tự nhien bé hơn 10 nên a+b+c<30
và 111>30 nên a+b+c không thể bằng 111
Vậy A không phải là số chính phương
Ta tách đến kết quả: A=111(a+b+c)
Vì a,b,c thuộc N* (vì 3 số trên gạch đầu bạn ạ) => a+b+c thuộc N*
Mà 111 chia hết cho 111
Do đó [111 (a+b+c)] chia hết cho 111
hay A chia hết cho 111
Mà A là số chính phương => A chia hết cho 111^2
Như vậy vì a+b+c thuộc N* (khác 0) nên a+b+c bé nhất phải bằng 111 (*)
Lại thấy a,b,c là các chữ số nên a+b+c nhỏ hơn hoặc bằng 27, trái với (*)
Ctỏ A không phải là số chính phương.
P/s: Tbày theo ý bạn nhé, mik viết một số cái k cần nhưng cho dễ hiểu ý mak ^^
Chỗ "mà A là scp" bạn đổi cho mik thành " Để A là scp" sẽ chuẩn hơn nhé!
Chứng minh rằng tổng sau không là số chính phương
A = abc + bca + cab
abc và bca và cab là số tự nhiên
A = abc + bca + cab
=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>A = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> A = 111a + 111b + 111c
=> A= 111( a+b+c )= 37 . 3( a+b + c)
giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le\) a + b + c \(\le\) 27
A = abc + bca + cab không phải là số chính phương
Chứng tỏ rằng tổng sau không là 1 số chính phương
A=abc+bca+cab
\(A=\overline{abc}+\overline{bca}+\overline{cab}\)
\(A=100a+10b+c+100b+10c+a+100c+10a+b\)
\(A=111a+111b+111c\)
\(A=111\left(a+b+c\right)\)
Với A là số chính phương chia hết cho 111 thì A chia hết cho 12321
nên a+b+c phải chia hết cho 111 và a+b+c khác 0 thì không có số a,b,c thỏa mãn
vậy A không là số chính phương
Chứng tỏ rằng tổng sau ko là số chính phương :
A=abc+bca+cab
A = abc + bca + cab
A = (100a + 10b + c) + (100b + 10c + a) + (100c + 10a + b)
A= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
A = 111a + 111b + 111c
A = 111.(a + b + c)
A = 3.37.(a + b + c)
Ta đã biết số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn, không chứa các thừa số nguyên tố với số mũ lẻ nên nếu A là số chính phương thì a + b + c = 3.37.k2 (k thuộc N*) => a + b + c = 111.k2 => a + b + c > hoặc = 111, vô lí vì a,b,c là chữ số nên a + b + c < hoặc = 27
Chứng tỏ ...
A=100a+10b+c+100b+10c+a+100c+10a+b
A=111a+111b+111c
A=111.(a+b+c)
Để 1 số là số chính phương thì số mũ là số chẵn.Tuy nhiên:
a+b+c ko bằng 11 được vì a;b;c đều có 1 chữ số.
Hay:111=37.3
a+b+c cũng bé hơn 37 nên:
A không là số chính phương.
Chúc em học tốt^^
Chứng tỏ rằng tổng sau không là số chính phương ;
abc + bca = cab
Ta co :
A=abc+bca+cab=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)
=111a+111b+111c
=111(a+b+c)
De A la so chinh phuong
=> a+b+c <111
Ma a,b,c la so tu nhien be hon 10 nen a+b+c<30 va 111>30 nen a+b+c khong the bang 111
Hay A không phải là số chính phương
nho k nha
Ta có : abc+bca=cab
111a+111b=111
111(a+b)=111
a+b=1
Ma 1 khong phai la so chinh phuong
\(\Rightarrow\)abc+bca=cab (dpcm)
chắc chắn đúng luôn
Chứng minh rằng tổng \(S=\overline{abc}+\overline{bca}+\overline{cab}+\overline{ab}+\overline{bc}+\overline{ca}\) không phải là một số chính phương.
\(S=abc+bca+cab+ab+bc+ca\)
\(=100a+10b+c+100b+10c+a+100c+10a+b+10a+b+10b+c+10c+a\)
\(=122a+122b+122c\)
\(=122\left(a+b+c\right)\)
\(=61.2\left(a+b+c\right)\)
Vì 61 và 2 là các số nguyên tố nên để S là số chính phương thì trước hết a + b + c chia hết cho 61 và 2.
a + b + c > 0 ; mà a+b+c < 28; nên nó không thể chia hết cho 61.
Do đó S không thể là số chính phương.
vào đây nhé: Câu hỏi của phandangnhatminh - Toán lớp 7 - Học toán với OnlineMath
t i c k nhé!! 46457645774745756858768967969689088558768578769
Chứng tỏ rằng tổng sau không là số chính phương :
A = abc + bca + cab
MẤY BẠN LÀM GIÚP MÌNH NHA HUHU @@@ !!!
A= abc+bca+cab
=100a+10b+c+100b+10c+a+100c+10a+b
=(100a+10a+a)+(100b+10b+b)+(100c+10c+c)
=111a+111b+111c
=111(a+b+c)
=> A ko phải số chính phương
nhớ tk mk nha!