cho a,b,c dương và abc=1 .
Tính Min C = ( 1+a)(1+b)(1+c) Đừng áp dụng Cô-si :3chứng minh nếu các số dương a,b,c có tổng a+b+c=1 thì 1/a+1/b+1/c >=9
áp dụng BĐT cô si hộ
áp dung BĐT cô si \(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
vì a+b+c=1 => dpcm
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=9\)
<=>1+1+1 +\(\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\)>=9 (*)
áp đụng cô si
\(\frac{a}{b}+\frac{b}{a}>=2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
tương tự
\(\frac{a}{c}+\frac{c}{a}>=2\)
\(\frac{b}{c}+\frac{c}{b}>=2\)
=> (*) đúng Mà a+b+c=1
=> đpcm
Áp dụng BĐT Cô-si
Cho a,b,c\(\ge0\). Chứng minh các BĐT sau
a. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
b. \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c,vớia,b,c\ge0\)
a)Áp dụng Bđt Cô si ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cộng theo vế 2 bđt trên ta có:
\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
Dấu = khi a=b=c
b)Áp dụng Bđt Cô-si ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)
Cộng theo vế 3 bđt trên ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Đấu = khí a=b=c
bn sử đấu = khí là dấu = khi nhé
với các số a ; b; c nguyên dương và \(a+b+c+ab+bc+ac=6abc\)
CMR \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
HD : ÁP dụng BĐT thức cô -si
chứng minh bất đẳng thức:.1/a+1/b+1/c>=9/(a+b+c)
Ko áp dụng bđt cô-si có làm đc ko mn (ko giải cách lớp 9 nha). Ai có câu trả lời chính xác mình cho 3 tk.
nhân chéo lên
nhân a+b+c từ 9/a+b+c sang vế trái
vế phải còn 9
sau đó nhân vế trái ra
sử dụng bdt cosi là ra nha bn
1/a + 1/b + 1/c ≥ 9/(a+b+c)
<=> (1/a + 1/b + 1/c )(a+b+c) ≥ 9
Ta có : 1/a + 1/b + 1/c ≥ 3.căn bậc 3 1/abc
a+b+c ≥ 3 căn bậc 3 abc
(1/a + 1/b + 1/c)(a+c+c) ≥ 9 căn bậc 3 abc/abc = 9
<=> 1/a + 1/b + 1/c ≥ 9(a+b+c)
Dấu ''='' xảy ra khi : a=b =c
Cho a, b, c là các số dương thỏa mãn a+b+c=6
CM: a, 1/a + 1/b + 1/c lớn hơn hoặc bằng 3/2
b, a^2/c + b^2/a + c^2/b lớn hơn hoặc bằng 6
(dùng bđt cô-si)
Lời giải:
a. Áp dụng BĐT Cô-si:
$\frac{1}{a}+\frac{a}{4}\geq 1$
$\frac{1}{b}+\frac{b}{4}\geq 1$
$\frac{1}{c}+\frac{c}{4}\geq 1$
Cộng theo vế:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a+b+c}{4}\geq 3$
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{6}{4}\geq 3$
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
b.
Áp dụng BĐT Cô-si:
$\frac{a^2}{c}+c\geq 2a$
$\frac{b^2}{a}+a\geq 2b$
$\frac{c^2}{b}+b\geq 2c$
$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}+(c+a+b)\geq 2(a+b+c)$
$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\geq a+b+c=6$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
cho a,b >0 , a>1. Tìm min A = a/√a-1 sử dụng bát đẳng thức cô si
\(A=\dfrac{a}{\sqrt{a-1}}=\dfrac{a-1+1}{\sqrt{a-1}}=\sqrt{a-1}+\dfrac{1}{\sqrt{a-1}}\ge2\sqrt{\dfrac{\sqrt{a-1}}{\sqrt{a-1}}}=2\)
\(A_{min}=2\) khi \(a-1=1\Leftrightarrow a=2\)
Dạng 1: Bất đẳng thức cô-si
Bài 1 : Cho a,b.c>0 Chứng minh rằng \(a^3+b^3+c^3\ge a^2b+b^2c+ca^2\)
từ đó Chứng minh dạng tổng quát là : \(a^x+b^x+c^x\ge a^m.b^n+b^m.c^n+c^m.a^n\) ( m,n,x là các số nguyên dương và m+n=x)
Bài 2: Cho a,b.c>0
a)Chứng minh rằng \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge a+b+c\)
b) Chứng minh rằng \(\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge a+b+c\) ( cả 2 câu này cach làm như nhau nhé !)
Bài 3 :Cho a,b,c> 0 Thỏa mãn abc=1. Chứng minh rằng \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\)
Áp dụng 1 trong 2 bài trên )
Bài 4:Cho x,y >0 thỏa mãn \(x+y\le2\)
Tìm min của \(A=\frac{1}{x^2}+\frac{1}{y^2}+2x+2y\)
^_^
Mấy câu này các bạn k cần full cũng được!
bài 1 a, hình như có thêm đk là a+b+c=3
Bài 4 nha
Áp dụng BĐT cô si ta có
\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)
Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1
câu 1 mk bị lộn nhưng đáng ra ca^2 thành c^2a mới đúng
cho 3 số dương a,b,c.và abc>=2
tìm Min (1-a).(1-b).(1-c)
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân