q=(n^2+n)(1+n)+n^2x^2+1/(n^2-n)(1-n)+n^2x^2+1 . chung minh q khong phu thuoc vao x va q>0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chung minh bieu thuc Q=(x^4*y^n+1-1/2*x^3*y^n+2):1/2x^3*y^n-20x^4*y:5*xy^2 (n thuoc N) luon <0 voi moi gia tri x khac 0,y khac 0
Chung minh pt x2-2( m+1)x+m-4 luon co hai n0 phan biet x1; x2 va bieu thuc M=x1 (1-x2) +x2 (1-x1) khong phu thuoc vao m
Chung minh rang: moi n thuoc z ( n khac 0,n khac -1) thi : Q =1\1.2+1\2.3+1\3.4+......+1\n(n+1) khong phai la so nguyen
Q = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
Vì n là số nguyên khác 0; - 1
=> \(\frac{1}{n+1}\)không là số nguyên
=> \(Q=1-\frac{1}{n+1}\)không là số nguyên
Nguyễn Linh Chi :) trường con lại bắt trình bày rõ ràng thế này ; nếu bạn Nguyen duc anh cũng cần cách này ;
\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{2}-\frac{1}{2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
rồi bắt đầu làm như cô Nguyễn Linh Chi
Cho bieu thuc sau ko phu thuoc vao x
\(B=x^4\left(x^n+1\right)-2\left(x^n+1\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2004\)
chứng minh Q không phụ thuộc vào biến x và Q\(\ge\)0
\(Q=\frac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}\)
\(Q=\frac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}=\frac{x^2+n+x^2n+n^2+x^2n^2+1}{x^2-n-x^2n+n^2+n^2x^2+1}\)
\(=\frac{x^2\left(n^2+n+1\right)+n^2+n+1}{x^2\left(n^2-n+1\right)+n^2-n+1}=\frac{\left(x^2+1\right)\left(n^2+n+1\right)}{\left(x^2+1\right)\left(n^2-n+1\right)}=\frac{n^2+n+1}{n^2-n+1}\)
Vậy giá trị của biểu thức Q không phụ thuộc vào biến x
cho n thuộc N.
\(Q=\frac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}\)
chứng minh rằng Q không phụ thuộc vào giá trị của x và Q>0
Chung minh voi x\(\ne\)\(\pm\)1, gia tri cua bieu thuc sau khong phu thuoc vao gia tri cua bien:
A=(\(\dfrac{x+3}{2x+2}\)+\(\dfrac{3}{1-x^2}\)-\(\dfrac{x+1}{2x-2}\))\(\div\)\(\dfrac{3}{2x^2-2}\)
ta có:
A = \(\left(\dfrac{x+3}{2x+2}+\dfrac{3}{1-x^2}-\dfrac{x+1}{2x-2}\right):\dfrac{3}{2x^2-2}\)
= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{x^2-1}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x^2-1\right)}\)
= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(\left(\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}-\dfrac{6}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(\left(\dfrac{x^2-x+3x-3-6-x^2-2x-1}{2\left(x+1\right)\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(-\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{2\left(x+1\right)\left(x-1\right)}{3}\)
= \(-\dfrac{10}{3}\)
Vậy phương trình trên ko phụ thuộc vào biến
cho P =\(7.2014^n+12.1995^n\) với \(n\subseteq N;Q=\dfrac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}\).Chứng minh:
a. P chia hết cho 9
b. Q không phụ thuộc vào x và Q>0
Chung minh:
\(\frac{n\left(n+1\right)}{2}\) va 2n+1 nguyen to cung nha voi moi n thuoc N
helps me
Neu ai doc ko het thi vao phan doc them thi se hieu ro hon nhe