Những câu hỏi liên quan
TH
Xem chi tiết
HN
21 tháng 10 2015 lúc 19:53

Gọi 3 stn liên tiếp là: a;a+1;a+2

Ta có : a+a+1+a+2=3a+(1+2)=3a+3

Mà 3a chia hết cho 3 ; 3 chia hết cho 3 

Nên 3a+3 chia hết cho 3

Vậy tổng 3 stn liên tiếp chia hết cho 3

Bình luận (0)
PC
21 tháng 10 2015 lúc 19:54

Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2 

ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3 

Vậy 3 số tự nhiên liên tiếp chia hết cho 3

Bình luận (0)
ST
21 tháng 10 2015 lúc 19:57

Giải :

Tổng 3 STN liên tiếp bằng :

A + ( A +1 ) + ( A + 2 )

= ( A + A + A ) + ( 1 + 2 )

= 3A + 3

Mà 3A chia hết cho 3; 3 chia hết cho 3

\(\Rightarrow\)A + ( A + 1 ) + ( A + 2 ) chia hết cho 3 với mọi A ( đpcm ).

 

 

Bình luận (0)
HT
Xem chi tiết
DT
Xem chi tiết
TB
26 tháng 6 2015 lúc 7:28

c)

gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)

ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)

                                       \(=2.2.k.k+4k\)

                                       \(=4k^2+4k\)

mà \(4k^2+4k\) chia hết cho 4

=>\(2k.\left(2k+2\right)\) chia hết cho 4

Bình luận (0)
NT
20 tháng 9 2015 lúc 7:38

a)Goi 2 so tu nhien lien tiep la a;a+1

Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2

Neu a la so le:a+1 la so le

Vay tich2 so tu nhien lien tiep chia het cho 2

Bình luận (0)
TB
26 tháng 6 2015 lúc 7:19

a)

gọi 2 số tự nhiên liên tiếp là 2k;2k+1. ta có:

*nêu 2k lẻ=>2k+1 chẳn =>2k+1 chia hết cho 2

*nếu 2k+1 lẻ=> 2k chẳn =>2k chia hết cho 2

vậy DPCM 

Bình luận (0)
LC
Xem chi tiết

Gọi n số nguyên liên tiếp là k+1;k+2;k+3;...;k+nk+1;k+2;k+3;...;k+n

Ta cần chứng minh (k+1)(k+2)...(k+n)⋮n!(k+1)(k+2)...(k+n)⋮n!

Cách 1. Ta có (nk)∈Z,∀n,k∈Z(nk)∈Z,∀n,k∈Z

Mà (nk+n)=(n+k)!k!n!=(k+1)(k+2)...(k+n)n!∈Z(nk+n)=(n+k)!k!n!=(k+1)(k+2)...(k+n)n!∈Z nên ta có đpcm.

Cách 2. Ta có: vp(n!+k!)≥vp(n!)+vp(k!)=vp(n!.k!)vp(n!+k!)≥vp(n!)+vp(k!)=vp(n!.k!)

Do đó (n+k)!⋮n!k!(n+k)!⋮n!k!, suy ra đpcm.

Chứng minh công thức ở trên:

Do [a+b]≥[a]+[b][a+b]≥[a]+[b] nên vp(n!+k!)=+∞∑i=1[n!+k!pi]≥+∞∑i=1[n!pi]++∞∑i=1[k!pi]=vp(n!)+vp(k!)vp(n!+k!)=∑i=1+∞[n!+k!pi]≥∑i=1+∞[n!pi]+∑i=1+∞[k!pi]=vp(n!)+vp(k!)

P/s: 2 cách này là như nhau nhưng ở cách 2 không cần biết đến số tổ hợp chập k của n phần tử (nk)(nk) nhưng lại cần biết vp(n)vp(n).

Bình luận (0)
HA
Xem chi tiết
KT
14 tháng 7 2018 lúc 19:15

Gọi 3 số tự nhiên đó là:  \(n-1;\)\(n;\)\(n+1\)  (\(n\ge1;\)\(n\in N\))

Tích 3 số là:   \(A=\left(n-1\right)n\left(n+1\right)\)

Nếu:  \(n=3k\)thì:   \(A⋮3\)Nếu:  \(n=3k+1\)thì:  \(n-1=3k+1-1=3k\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)Nếu:   \(n=3k+2\)thì:  \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)

Vậy tích 3 số tự nhoeen liên tiếp luôn chia hết cho 3

Bình luận (0)
H24
14 tháng 7 2018 lúc 19:13

trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2           (1)

trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 3               (2)

(2; 3) = 1                             (3)

(1)(2)(3) => tích của 3 số tự nhiên liên tiếp chia hết cho 6

Bình luận (0)
LV
14 tháng 7 2018 lúc 19:14

  Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*) 
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6 

n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2 
=> A chia hết cho 2 

n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 

Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)

Bình luận (0)
TD
Xem chi tiết
H9
11 tháng 8 2023 lúc 13:31

a) Ta có: 

\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)

Nên \(10^{10}-1\) ⋮ 9

b) Ta có:

\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)

Mà: \(1+0+0+...+2=3\) ⋮ 3

Nên: \(10^{10}+2\) ⋮ 3

Bình luận (0)
NV
Xem chi tiết
TA
18 tháng 7 2016 lúc 10:19

a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))

Nếu m chia hết cho 2 thì ta có điều cần chứng minh

Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2

b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))

Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3

=> ĐPCM

Bình luận (0)
H24
Xem chi tiết
DQ
Xem chi tiết
SL
14 tháng 12 2017 lúc 18:43

Gọi 5 số tự nhiên liên tiếp đó là a, a+1, a+2, a+3, a+4.

Nếu \(a=5k\Rightarrow a⋮5\)

Nếu \(a=5k+1\Rightarrow a+4=5k+1+4=5k+5⋮5\)

\(\Rightarrow a+4⋮5\)

Nếu \(a=5k+2\Rightarrow a+3=5k+2+3=5k+5⋮5\)

\(\Rightarrow a+3⋮5\)

Nếu \(a=5k+3\Rightarrow a+2=5k+3+2=5k+5⋮5\)

\(\Rightarrow a+2⋮5\)

Nếu \(a=5k+4\Rightarrow a+1=5k+4+1=5k+5⋮5\)

\(\Rightarrow a+1⋮5\)

Vậy trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5.

Bình luận (0)