Những câu hỏi liên quan
LN
Xem chi tiết
PQ
21 tháng 10 2018 lúc 9:31

\(\frac{5a+5b-c}{c}=\frac{5b+5c-a}{a}=\frac{5c+5a-b}{b}\)

\(\Leftrightarrow\)\(\frac{5a+5b-c}{c}+1=\frac{5b+5c-a}{a}+1=\frac{5c+5a-b}{b}+1\)

\(\Leftrightarrow\)\(\frac{5a+5b}{c}=\frac{5b+5c}{a}=\frac{5c+5a}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{5a+5b}{c}=\frac{5b+5c}{a}=\frac{5c+5a}{b}=\frac{5a+5b+5b+5c+5c+5a}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)

Do đó : 

\(\frac{5a+5b}{c}=10\)\(\Leftrightarrow\)\(5a+5b=10c\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)

\(\frac{5b+5c}{a}=10\)\(\Leftrightarrow\)\(5b+5c=10a\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)

\(\frac{5c+5a}{b}=10\)\(\Leftrightarrow\)\(5c+5a=10b\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)

Thay (1), (2) và (3) vào \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{16120abc}\) ta được : 

\(P=\frac{2c.2a.2b}{16120abc}=\frac{8abc}{16120abc}=\frac{1}{2015}\)

Vậy \(P=\frac{1}{2015}\)

Chúc bạn học tốt ~ 

Bình luận (0)
LC
Xem chi tiết
SG
7 tháng 12 2016 lúc 22:37

+ Nếu a+b+c=0 thì a+b=-c; b+c=-a; c+a=-b

P = -c.(-a).(-b)/16120abc = -1/16120

+ Nếu a+b+c khác 0

Áp dung t/c của dãy tỉ số = nhau ta có:

5a+5b-c/c = 5b+5c-a/a = 5c+5a-b/b

= (5a+5b-c)+(5b+5c-a)+(5c+5a-b)/c+a+b

= 9(a+b+c)/a+b+c = 9

=> 5a+5b-c=9c; 5b+5c-a=9a; 5c+5a-b=9b

=> 5a+5b=10c; 5b+5c=10a; 5c+5a=10b

=> a+b=2c; b+c=2a; c+a=2b

P = 2c.2a.2b/16120abc = 1/2015

Bình luận (1)
MU
Xem chi tiết
TD
Xem chi tiết
TL
Xem chi tiết
MT
Xem chi tiết
TC
27 tháng 7 2021 lúc 21:11

undefined

Bình luận (3)
TC
27 tháng 7 2021 lúc 21:15

undefined

Bình luận (2)
TT
Xem chi tiết
NN
6 tháng 2 2018 lúc 19:10

\(A=\dfrac{ab+10b+25}{ab+5a+5b+25}+\dfrac{bc+10c+25}{bc+5b+5c+25}+\dfrac{ca+10a+25}{ac+5a+5c+25}\)

\(=\dfrac{\left(ab+5b\right)+\left(5b+25\right)}{\left(ab+5a\right)+\left(5b+25\right)}+\dfrac{\left(bc+5c\right)+\left(5c+25\right)}{\left(bc+5b\right)+\left(5c+25\right)}+\dfrac{\left(ca+5a\right)+\left(5a+25\right)}{\left(ac+5a\right)+\left(5c+25\right)}\)

\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{a\left(c+5\right)+5\left(c+5\right)}\)

\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)

\(=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)

\(=\left(\dfrac{b}{b+5}+\dfrac{5}{b+5}\right)+\left(\dfrac{a}{a+5}+\dfrac{5}{a+5}\right)+\left(\dfrac{c}{c+5}+\dfrac{5}{c+5}\right)\)

\(=1+1+1=3\) (\(a;b;c\ne-5\))

Bình luận (0)
NY
6 tháng 2 2018 lúc 19:54

\(A=\dfrac{ab+5b+5b+25}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{bc+5c+5c+25}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{ca+5a+5a+25}{a\left(c+5\right)+5\left(c+5\right)}\)

\(A=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)

\(A=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)

\(A=\dfrac{a+5}{a+5}+\dfrac{b+5}{b+5}+\dfrac{c+5}{c+5}=1+1+1=3\)

Bình luận (0)
DT
Xem chi tiết
TH
22 tháng 1 2021 lúc 18:14

Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).

Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)

\(\Rightarrow5a+4\ge\left(a+2\right)^2\)

\(\Rightarrow\sqrt{5a+4}\ge a+2\).

Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).

Cộng vế với vế ta có \(T\ge a+b+c+6=7\).

Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.

Vậy Min T = 7 khi a = 1; b = c = 0. 

Bình luận (0)
H24
22 tháng 1 2021 lúc 18:21

Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)

Do $0\leq a \leq 1$ nên $a\ge a^2.$

Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)

Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)

rồi đi chọn $m,n$ theo điểm rơi.

Không biết còn cách nào khác không nhỉ?

Bình luận (0)
ND
Xem chi tiết