Những câu hỏi liên quan
NH
Xem chi tiết
H24
4 tháng 1 2018 lúc 10:54

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)

\(\Leftrightarrow\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\)

\(\Leftrightarrow xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\)

\(\Leftrightarrow x^{2018}-x^{2017}y-xy^{2017}+y^{2018}\ge0\)

\(\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^{2016}+x^{2015}y+...+y^{2016}\right)\ge0\)

Đến đây dễ rồi bạn tự làm tiếp nhê

Bình luận (0)
MD
7 tháng 3 2020 lúc 14:29

Làm tiếp kiểu j bạn???

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
H24
Xem chi tiết
H24
25 tháng 12 2017 lúc 15:18

help me, please!!!!

Akai Haruma Nguyễn Huy Tú Ace Legona soyeon_Tiểubàng giải Phương An,....

Bình luận (0)
TK
Xem chi tiết
NT
11 tháng 6 2019 lúc 10:51

Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?

Bình luận (0)
DH
11 tháng 6 2019 lúc 10:58

1) Xét hiệu :

\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)

\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)

\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)

\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)

\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)

Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)

Bình luận (0)
HN
Xem chi tiết
AH
25 tháng 12 2017 lúc 22:22

Lời giải:

TH1: \(x,y\) đều dương.

Xét hiệu:

\(2(x^{2018}+y^{2018})-(x+y)(x^{2017}+y^{2017})=x^{2018}+y^{2018}-xy^{2017}-x^{2017}y\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=x^{2017}(x-y)-y^{2017}(x-y)\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x^{2017}-y^{2017})\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x-y)(x^{2016}+...+y^{2016})\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)^2(x^{2016}+...+y^{2016})\geq 0\) với mọi \(x,y>0\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})\geq 2(x^{2017}+y^{2017})\)

\(\Leftrightarrow x^{2018}+y^{2018}\geq x^{2017}+y^{2017}\) (1)

TH2: \(x,y\) trái dấu. Giả sử \(x>0; y< 0\)

\(x+y=2\Rightarrow x=2-y> 2\)

\(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)\)

Vì \(x>2 \Rightarrow x^{2017}(x-1)>0\)

\(y< 0\Rightarrow y^{2017}< 0; y-1< 0\Rightarrow y^{2017}(y-1)>0\)

Do đó: \(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)>0\)

\(\Rightarrow x^{2018}+y^{2018}> x^{2017}+y^{2017}\) (2)

Từ (1),(2) ta có đpcm.

Bình luận (0)
TT
Xem chi tiết
ND
21 tháng 12 2017 lúc 11:19

\(x^{2018}+y^{2018}\ge x^{2017}+y^{2017}\)

\(\Rightarrow\left(x+y\right)\left(x^{2018}+y^{2018}\right)\ge\left(x+y\right)\left(x^{2017}+y^{2017}\right)\)

\(\Rightarrow2\left(x^{2018}+y^{2018}\right)\ge2\left(x^{2017}+y^{2017}\right)\)

\(\Rightarrow2\left(x^{2018}+y^{2018}\right)-\left(x+y\right)\left(x^{2017}+y^{2017}\right)\ge0\)

\(\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\)\(\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y\ge0\\x^{2017}-y^{2017}\ge0\end{matrix}\right.\)

\(\Rightarrow x\ge y\)

Vậy với \(x\ge y\Rightarrowđpcm\)

Bình luận (1)
TL
Xem chi tiết
LK
26 tháng 12 2017 lúc 12:24

Ta có:

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)    và x+y=2

Xét dấu =

Dấu ''='' xảy ra khi và chỉ khi

x=y=1

Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1

Hết.

Em mới học lớp 7 nên ko biết đúng ko

Bình luận (0)
PH
Xem chi tiết
DH
Xem chi tiết