NV

Những câu hỏi liên quan
PB
Xem chi tiết
CT
31 tháng 12 2017 lúc 4:09

Ta có: f(x) + h(x) = g(x)

Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)

            = x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1

            = ( x4 – x4) – x3 + (x2 + 3x2 ) – x + (5+ 1)

            = -x3 + 4x2 – x + 6

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 12 2017 lúc 14:58

Ta có: f(x) – h(x) = g(x)

Suy ra: h(x) = f(x) – g(x) = (x4 – 3x2 + x – 1) – (x4 – x3 + x2 + 5)

            = x4 – 3x2 + x – 1 – x4 + x3 – x2 – 5

            = (x4 – x4) + x3 – (3x2 + x2) + x - (1+ 5)

            = x3 – 4x2 + x – 6

Bình luận (0)
H24
Xem chi tiết
DA
18 tháng 3 2017 lúc 10:18

=>5x=55,35

=>x=55,35:5=11.07

Bình luận (0)
DM
18 tháng 3 2017 lúc 10:22

x4 + x = 55 , 35

x4 + x1 = 55 , 35

x x ( 1 + 4 ) = 55 , 35

x x 5 = 55 , 35

x = 55 , 35 : 5

x = 11 , 07

Bình luận (0)
VK
18 tháng 3 2017 lúc 10:25

x4 + x = 55,35

x5 = 55,35

x = 55,35 :5

x = 11,07

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 2 2019 lúc 11:24

25,x4 > 25,74      

x = 8 hoặc x = 9

Bình luận (0)
LB
Xem chi tiết
NL
13 tháng 12 2020 lúc 17:33

Đặt \(\sqrt{x^2+2012}=t>0\Rightarrow2012=t^2-x^2\)

Pt trở thành:

\(x^4+t=t^2-x^2\)

\(\Leftrightarrow x^4-t^2+x^2+t=0\)

\(\Leftrightarrow\left(x^2+t\right)\left(x^2-t+1\right)=0\)

\(\Leftrightarrow x^2+1=t\)

\(\Leftrightarrow x^2+1=\sqrt{x^2+2012}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+2012\)

\(\Leftrightarrow x^4+x^2-2011=0\)

\(\Leftrightarrow x=\pm\sqrt{\dfrac{-1+\sqrt{8045}}{2}}\)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 9 2017 lúc 16:26

Ta có: x 4 = 7 ⇔ x 2 2 = 7

⇔ x 2 = 7 ⇔  x 2  = 7

Vậy x = 7 và x = -  7

Bình luận (0)
MH
Xem chi tiết
ND
25 tháng 10 2023 lúc 20:03

a,x=0;1

 

Bình luận (0)
3M
25 tháng 10 2023 lúc 22:11

a.x=0;1

b.x=0;1;2;3;4;5;6;7;8;9

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
8 tháng 3 2017 lúc 14:52

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 1 2024 lúc 8:35

Bài 1:

\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)

\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)

\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)

Bình luận (2)
H24
13 tháng 1 2024 lúc 8:45

Bài 2:

\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)

Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:

\(\left(y-1\right)\left(y+1\right)=120\)

\(\Leftrightarrow y^2-1=120\)

\(\Leftrightarrow y^2=121\)

\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)

+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)

+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)

\(\Leftrightarrow x^2+5x+16=0\)

\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

\(\Rightarrow\) loại

Vậy \(x\in\left\{1;-6\right\}\).

\(b,\) Đề thiếu vế phải rồi bạn.

Bình luận (0)