chứng minh rằng biểu thức sau luôn có giá trị dương với mọi giá trị của biến
P=a4-5a2-a+9.5
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng biểu thức sau luôn có giá trị dương với mọi giá trị của biến
P=a4-5a2-a+9.5
chứng minh rằng giá trị của mỗi biểu thức sau luôn dương với mọi giá trị của biến
36x^2+6x+1
Chứng minh rằng các giá trị của biểu thức sau luôn dương với mọi giá trị của biến:
A = 25x2 - 20x + 7
\(A=25x^2-20x+7\)
\(\Rightarrow A=\left(5x\right)^2-2.2.5x+2^2-2^2+7\)
\(A=\left(5x-2\right)^2+3\ge3\)
Vậy \(A\ge3\)với mợi GT x
chứng minh biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến x:E=x^2+2x+15
\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)
E=(x2+2x+1)+14=(x+1)2+14
ta có (x+1)2 >=0 với mọi x
suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
Chứng minh rằng biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến:
2x^2+8x+15
Ta tách như sau: \(2x^2+8x+15=2\left(x^2+4x+4\right)+7=2\left(x+2\right)^2+7\)
Do \(\left(x+2\right)^2\ge0\Rightarrow2\left(x+2\right)^2+7\ge7>0\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của biến.
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến
a=2x-x2-2
giá trị âm nhá
A = 2x - x2 - 2
= -(x2 - 2x + 2)
= -(x2 - 2x + 1 + 1)
= -(x2 - 2x + 1) - 1
= -(x - 1)2 - 1
Vì (x - 1)2 \(\ge0\forall x\)
=> -(x - 1)2 \(\le0\forall x\)
Vậy A = -(x - 1)2 - 1 \(\le1< 0\forall x\)
\(a=2x-x^2-2\)
\(a=-x^2+2x-2\)
\(a=-x^2+2x-1-1\)
\(a=-\left(x-1\right)^2-1\le-1\)
Dấu "=" xảy ra khi x = 1
Vậy x luôn âm
chứng minh rằng giá trị của mỗi biểu thức sau luôn dương với mọi giá trị của biến \(^{x^2-x+1}\)(hằng đẳng thức)
= ( x2 - 2 .x . 1/2 +1/4 ) 3/4
= (x-1/2)2 + 3/4 >= 3/4 > 0 nên luôn dương V
học tốt
Ta có:
\(x^2-x+1\)
\(=x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\)với \(\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với\(\forall x\)
hay giá trị của mỗi biểu thức trên luôn dương với mọi giá trị của biến
Chứng minh giá trị của biểu thức sau luôn dương với mọi giá trị của biến
A=9x^2-6xy +2y^2+1
\(9x^2-6xy+2y^2+1\)
\(=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\)
\(=\left(3x+y\right)^2+y^2+1\)
ta có \(\left(3x+y\right)^2\ge0\forall x,y\)
\(y^2\ge0\forall y\)
\(\Rightarrow\left(3x+y\right)^2+y^2+1>0\forall x,y\)