Tìm a,b,c biết:
\(\dfrac{1}{2}a=\dfrac{2}{3}b\) = \(\dfrac{3}{4}c\)
Tìm a, b, c, biết
a) \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}\) và \(a-2b+3c=14\)
b) \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\) và \(a+b+c=49\)
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
1.tìm số xyz biết \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25},vàx-y+z=4\)
2. biết \(a^2+ab+\dfrac{b^2}{3}=25;c^2+\dfrac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠ 0; c ≠ 0; a ≠ -0. c/m rằng \(\dfrac{2c}{a}=\dfrac{b+c}{a+c}\)
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
Tìm a,b,c biết:
\(\dfrac{a}{3}=\dfrac{b}{4};\dfrac{b}{2}=\dfrac{c}{5}\) và a-c+b=3
Ta có: \(\dfrac{a}{3}=\dfrac{b}{4}\)
\(\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a-c+b}{3-10+4}=\dfrac{3}{-3}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right).3=-3\\b=\left(-1\right).4=-4\\c=\left(-1\right).10=-10\end{matrix}\right.\)
\(\dfrac{a}{3}=\dfrac{b}{4};\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a+b-c}{3+4-10}=\dfrac{3}{-3}=-1\\ \Rightarrow\left\{{}\begin{matrix}a=-1\cdot3=-3\\b=-1\cdot4=-4\\c=-1\cdot10=-10\end{matrix}\right.\)
Tìm a,b,c biết:
\(\dfrac{a}{3}=\dfrac{b}{4};\dfrac{b}{2}=\dfrac{c}{5}\)và a-c+b=3
\(\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a-c+b}{3-10+4}=\dfrac{3}{-3}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right).3=-3\\b=\left(-1\right).4=-4\\c=\left(-1\right).10=-10\end{matrix}\right.\)
Bài 6: Tìm x, biết
a) \(\dfrac{3}{2}\) x \(\dfrac{4}{5}\) - X =\(\dfrac{2}{3}\)
b) X x 3\(\dfrac{1}{3}\) = 3\(\dfrac{1}{3}\) : 4\(\dfrac{1}{4}\)
c) 5\(\dfrac{2}{3}\) : x = 3\(\dfrac{2}{3}\) - 2\(\dfrac{1}{2}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(\dfrac{6}{5}-x=\dfrac{2}{3}\)
\(x=\dfrac{6}{5}-\dfrac{2}{3}\)
\(x=\dfrac{18}{15}-\dfrac{10}{15}\)
\(x=\dfrac{8}{15}\)
Vậy, `x =`\(\dfrac{8}{15}\)
`b)`
\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)
\(x=\dfrac{4}{17}\)
Vậy, \(x=\dfrac{4}{17}\)
`c)`
\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)
\(x=\dfrac{34}{7}\)
Vậy, `x = `\(\dfrac{34}{7}\)
a) \(\dfrac{3}{2}x\dfrac{4}{5}-x=\dfrac{2}{3}\Rightarrow\dfrac{6}{5}-x=\dfrac{2}{3}\Rightarrow x=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{18}{15}-\dfrac{10}{15}=\dfrac{8}{15}\)
b) \(x.3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\Rightarrow\dfrac{10}{3}.x=\dfrac{10}{3}:\dfrac{17}{4}\Rightarrow\dfrac{10}{3}.x=\dfrac{10}{3}.\dfrac{4}{17}\Rightarrow x=\dfrac{10}{3}.\dfrac{4}{17}:\dfrac{10}{3}=\dfrac{10}{3}.\dfrac{4}{17}.\dfrac{3}{10}=\dfrac{4}{17}\)
c) \(5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\dfrac{1}{2}\Rightarrow\dfrac{17}{3}:x=\dfrac{11}{3}-\dfrac{5}{2}\Rightarrow\dfrac{17}{3}:x=\dfrac{22}{6}-\dfrac{15}{6}\Rightarrow\dfrac{17}{3}:x=\dfrac{7}{6}\Rightarrow x=\dfrac{17}{3}:\dfrac{7}{6}=\dfrac{17}{3}.\dfrac{7}{6}=\dfrac{119}{18}\)
Tìm x biết: a) x . \(\dfrac{-3}{4}\) = \(\dfrac{2}{5}\) + \(\dfrac{3}{4}\) b) 1 - 1\(\dfrac{1}{5}\)x = 60%
c) \(\dfrac{1}{2}\)x + \(\dfrac{3}{2}\)x + x = 16
Tìm x, biết:
a) \(-\dfrac{3}{5}\) - x = -0,75
b) \(1\dfrac{4}{5}\) = -0,15 - x
c) \(2\dfrac{1}{2}\) - x +\(\dfrac{4}{5}\) = \(\dfrac{2}{3}\) - ( \(-\dfrac{4}{7}\))
\(a,-\dfrac{3}{5}-x=-0,75\\ -\dfrac{3}{5}-x=-\dfrac{3}{4}\\ x=-\dfrac{3}{5}-\left(-\dfrac{3}{4}\right)\\ x=-\dfrac{3}{5}+\dfrac{3}{4}=\dfrac{3}{20}\\ ---\\ b,1\dfrac{4}{5}=-0,15-x\\ \dfrac{9}{5}=-\dfrac{3}{20}-x\\ x=-\dfrac{3}{20}-\dfrac{9}{5}\\ x=-\dfrac{3}{20}-\dfrac{36}{20}\\ x=-\dfrac{39}{20}\\ ----\\ c,2\dfrac{1}{2}-x+\dfrac{4}{5}=\dfrac{2}{3}-\left(-\dfrac{4}{7}\right)\\ \dfrac{5}{2}-x+\dfrac{4}{5}=\dfrac{2}{3}+\dfrac{4}{7}\\ \dfrac{33}{10}-x=\dfrac{26}{21}\\ x=\dfrac{33}{10}-\dfrac{26}{21}\\ x=\dfrac{433}{210}\)
Tìm x, biết:
a) \(\dfrac{-2}{5}\) + \(\dfrac{4}{5}\) . x = \(\dfrac{3}{5}\)
b) \(\dfrac{-3}{7}\) - \(\dfrac{4}{7}\) : x = \(\dfrac{2}{5}\)
c) \(\dfrac{4}{7}\) . x + \(\dfrac{2}{3}\) = \(\dfrac{-1}{5}\)
d) \(\dfrac{5}{7}\) : x -1 = \(\dfrac{2}{3}\)
a, - \(\dfrac{2}{5}\) + \(\dfrac{4}{5}\).\(x\) = \(\dfrac{3}{5}\)
\(\dfrac{4}{5}\).\(x\) = \(\dfrac{3}{5}\)+ \(\dfrac{2}{5}\)
\(\dfrac{4}{5}\).\(x\) = 1
\(x\) = \(\dfrac{5}{4}\)
b, - \(\dfrac{3}{7}\) - \(\dfrac{4}{7}\): \(x\) = \(\dfrac{2}{5}\)
\(\dfrac{4}{7}\): \(x\) = - \(\dfrac{3}{7}\) - \(\dfrac{2}{5}\)
\(\dfrac{4}{7}\): \(x\) = - \(\dfrac{29}{35}\)
\(x\) = \(\dfrac{4}{7}\): (- \(\dfrac{29}{35}\) )
\(x\) = - \(\dfrac{20}{29}\)
c, \(\dfrac{4}{7}\).\(x\) + \(\dfrac{2}{3}\) = - \(\dfrac{1}{5}\)
\(\dfrac{4}{7}\).\(x\) = -\(\dfrac{1}{5}\) - \(\dfrac{2}{3}\)
\(\dfrac{4}{7}\).\(x\) = - \(\dfrac{13}{15}\)
\(x\) = - \(\dfrac{13}{15}\): \(\dfrac{4}{7}\)
\(x\) = - \(\dfrac{91}{60}\)
d, \(\dfrac{5}{7}\): \(x\) - 1 = \(\dfrac{2}{3}\)
\(\dfrac{5}{7}\): \(x\) = \(\dfrac{2}{3}\)+ 1
\(\dfrac{5}{7}\): \(x\) = \(\dfrac{5}{3}\)
\(x\) = \(\dfrac{5}{7}\): \(\dfrac{5}{3}\)
\(x\) = \(\dfrac{3}{7}\)
Tìm x, biết:
a) \(\dfrac{2}{5}\) + \(\dfrac{3}{4}\): x = \(\dfrac{-1}{2}\)
b) \(\dfrac{5}{7}\) - \(\dfrac{2}{3}\) . x = \(\dfrac{4}{5}\)
c) \(\dfrac{1}{2}\) x + \(\dfrac{2}{3}\) x = \(\dfrac{-2}{3}\)
d) \(\dfrac{4}{7}\)x - x= \(\dfrac{-9}{14}\)
a, 2/5 + 3/4 : x = -1/2
3/4 : x = -1/2 - 2/5
3/4 : x = -9/10
x = 3/4 : -9/10
x = -5/6
b, 5/7 - 2/3 . x = 4/5
2/3 . x = 4/5 + 5/7
2/3 . x = 53/35
x = 53/35 : 2/3
x = 159/70
c và d mình làm dược nhưng ko ghi được cái suy ra
1)cho Q=\(\dfrac{a^4+a^3-a^2-2a-2}{a^4+2a^3-a^2-4a-2}\)
Tìm GTNN của Q
2)cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
CMR: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)
\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)
\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)