Những câu hỏi liên quan
H24
Xem chi tiết
H24
26 tháng 7 2021 lúc 14:22

Đây nhé! Tích giúp c nhaundefined

Bình luận (2)
HM
Xem chi tiết
KN
4 tháng 10 2017 lúc 13:20

theo bài ta có:

a + b + c = 0

=> a = -(b + c)

=> a2 = [-(b + c)]2

=> a2 = b2 + 2bc + c2

=> a2 - b2 - c2 = 2bc

=> ( a2 - b2 - c2)2 = (2bc)2

=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2

=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2

=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2

=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2

=> 2(a4 + b4 + c4) = 1

=> a4 + b4 + c4 = \(\dfrac{1}{2}\)

Bình luận (0)
H24
4 tháng 10 2017 lúc 12:04

Đề viết sai rồi bạn

Với a+b+c=0

CMR : a4+b4+c4=2(ab+bc+ac)2

Bình luận (0)
SL
Xem chi tiết
OO
Xem chi tiết
LP
Xem chi tiết
LP
9 tháng 9 2017 lúc 21:00

1, C/m : a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab) 
Ta có : 2( a^3 + b^3 + c^3 ) = ( a^3 + b^3 + c^3 ) + ( a^3 + b^3 + c^3 ) 
≥ 3abc + a^3 + b^3 + c^3 ( BĐT Côsi ) 
= a^3 + abc + b^3 + abc + c^3 + abc ≥ 2.a^2.căn (bc) + 2.b^2.căn (ac) + 2.c^2.căn (ab) ( BĐT Côsi ) 
=> a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab) 
Dấu " = " xảy ra khi a = b = c. 


2, C/m : (a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (3/2)(a + b + c) ( 1 ) 
Áp dụng BĐT Bunhiacốpxki cho phân số ( :D ) ta được : 
(a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (a^2 + b^2 + c^2).[(1+1+1)^2/(a+b+b+c+a+c)] = (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] 
(1) <=> (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] ≥ (3/2)(a + b + c) 
<=> 3(a^2 + b^2 + c^2) ≥ (a + b + c)^2 
<=> a^2 + b^2 + c^2 ≥ ab + bc + ca. 
BĐT cuối đúng nên => đpcm ! 
Dấu " = " xảy ra khi a = b = c. 


3, C/m : a^4 + b^4 + c^4 ≥ (a + b + c)abc 
Ta có : 2( a^4 + b^4 + c^4 ) = (a^4 + b^4 +c^4) + (a^4 + b^4 +c^4) 
≥ ( a^2.b^2 + b^2.c^2 + c^2.a^2 ) + (a^4 + b^4 +c^4) = ( a^4 + b^2.c^2 ) + ( b^4 + c^2.a^2 ) + ( c^4 + a^2.b^2 ) 
≥ 2.a^2.bc + 2.b^2.ca + 2.c^2.ab ( BĐT Côsi ) 
= 2.abc(a + b + c) 
Do đó a^4 + b^4 + c^4 ≥ (a + b + c)abc 
Dấu " = " xảy ra khi a = b = c. 

Bình luận (0)
H24
Xem chi tiết
NL
5 tháng 7 2021 lúc 14:57

Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\)  thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)

Bình luận (1)
TC
5 tháng 7 2021 lúc 14:58

https://olm.vn/hoi-dap/detail/108617134952.html

Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo

 

Bình luận (1)
TC
5 tháng 7 2021 lúc 15:04

undefined

Bình luận (1)
BA
Xem chi tiết
AH
18 tháng 7 2023 lúc 23:52

Lời giải:

$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$

$=[(a+b+c)^2-2(ab+bc+ac)]^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$

$=[1^2-2(-1)]^2-2[(-1)^2-2(-1).1]=3$

Bình luận (0)
NN
Xem chi tiết
TC
27 tháng 1 2022 lúc 17:45

Áp dụng BĐT Cauchy ta có:

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)

Tương tự ta cũng có:

\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)

\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)

\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)

Cộng theo vế các BĐT trên, ta được:

\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)

Dấu "=" xảy ra.....

Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))

 

Bình luận (0)
H24
Xem chi tiết
LH
11 tháng 1 2022 lúc 22:05

Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0

+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1

⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1

Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4

⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2

+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự

Bình luận (0)
VH
Xem chi tiết
AH
20 tháng 2 2022 lúc 13:26

Lời giải:

PT $\Leftrightarrow (a^2+b^2)^2-2(a^2+b^2)c^2+c^4-a^2b^2=0$

$\Leftrightarrow (a^2+b^2-c^2)^2-(ab)^2=0$

$\Leftrightarrow (a^2+b^2-c^2-ab)(a^2+b^2-c^2+ab)=0$

$\Rightarrow a^2+b^2-c^2-ab=0$ hoặc $a^2+b^2-c^2+ab=0$

Áp dụng định lý cosin:

Nếu $a^2+b^2-c^2-ab=0$

$\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+b^2-c^2}{2(a^2+b^2-c^2)}=\frac{1}{2}$

$\Rightarrow \widehat{C}=60^0$

Nếu $a^2+b^2-c^2+ab=0$

$\cos C=\frac{-1}{2}\Rightarrow \widehat{C}=120^0$

 

Bình luận (0)