Cho S = 1 + 2 + 22 + 23 + ..... + 22018. Tìm số dư khi S chia cho 7
Cho S= 2+ 22 + 23 +.....+ 22020 .Tìm dư của phép chia S cho 7
Lời giải:
\(S=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+...+(2^{2018}+2^{2019}+2^{2020})\)
\(=2+2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)\)
\(=2+(1+2+2^2)(2+2^5+...+2^{2018})=2+7(2+2^5+...+2^{2018})\)
Vậy $S$ chia $7$ dư $2$
S= 1+2+2^2+....+2^99
a,Chứng tỏ S chia hết cho 3
b,Tìm số dư của S khi chia cho 7
c,Tìm số tự nhiên x biết S+1=2^2x
4454564r5645675646556476t5
cho S=1+2+22+23+24+...+22021.Chứng tỏ bằng S chia hết cho 7
\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)
\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)
\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)
\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)
\(\Rightarrow dpcm\)
Cho S = 1+2+22+23+24+...+2299
Chứng tỏ rằng : a, S chia hết cho 3
b, S chia hết cho 7
c,S chia hết cho 15
GIẢI GIÚP MIK VS
Bài 1 : Có số tự nhiên nào mà (4+n).(7+n)= 11 không? Vì sao?
Bài 2: Tìm 3 số nguyên a,b,c thỏa mãn : a+b= -4 ; b+c= -6 ; c+a= 12
Bài 3: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho 6,7,9 được dư lần lượt là 2,3,5
Bài 4: Cho A = 2+22 + 23 + 24 + 25 + 26 + 27 + 28 + 29. Không tính , hãy chứng tỏ A chia hết cho 7
Bài 5: Cho S = 3+32 + 33 + 34 + 35 + 36. Chứng tỏ rằng S chia hết cho 4
Bài 6: Chứng tỏ rằng : Biểu thức A = 31 + 32 + 33 + 34 + ..........+ 32010 chia hết cho 4
Bài 7: Cho S = 1 + 2 + 22 + 23+ 24 + 25 + 26 + 27. Chứng tỏ rằng S chia hết cho 3
Bài 8: Tìm số tự nhiên n sao cho 3 chia hết cho ( n - 1)
giải giúp mình nha 1 bài cũng được
THANK YOU VERY MUCH!
Tìm số dư khi chia
1 + 2 + 22+ 23+ ... + 2100 chia cho 3
\(A=1+2+2^2+2^3+...+2^{100}\)
\(=1+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=1+3\left(2+2^3+...+2^{99}\right)\)
=>A chia 3 dư 1
cho A=1+2+22+23+.....+241
a) Thu gọn tổng A
b) chứng tỏ rằng:a chia hết cho 3,7
c)tìm số dư của a khi chia cho 5
a: \(A=1+2+2^2+...+2^{41}\)
=>\(2A=2+2^2+2^3+...+2^{42}\)
=>\(2A-A=2^{42}-1\)
=>\(A=2^{42}-1\)
b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{40}\right)⋮3\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)
\(=7\left(1+2^3+...+2^{39}\right)⋮7\)
S=1^5+2^5+3^5+...+100^5
Tìm số dư khi S chia cho 7
Bạn liệt kê ra thành từng nhóm
+ Nhóm chia hết cho 7
+ Nhóm chia 7 dư 1
+ Nhóm chia 7 dư 2
+ Nhóm chia 7 dư 3
...........................
+ Nhóm chia 7 dư 6
cho S=2+22+23+...+223+224
a,chứng minh rằng S chia hết cho 3
b,tìm chữ số tận cùng của S
cho S=2+22+23+...+223+224
a,chứng minh rằng S chia hết cho 3
b,tìm chữ số tận cùng của S
Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$
$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$
$=(1+2)(2+2^3+...+2^{23})$
$=3(2+2^3+...+2^{23})\vdots 3$
b.
$S=2+2^2+2^3+...+2^{23}+2^{24}$
$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$
$\Rightarrow 2S-S=2^{25}-2$
$\Rightarrow S=2^{25}-2$
Ta có:
$2^{10}=1024=10k+4$
$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$
$\Rightarrow S$ tận cùng là $0$