Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
BN
Xem chi tiết
NN
6 tháng 12 2017 lúc 17:26

\(a,\dfrac{13}{38}\)\(\dfrac{1}{3}.\)

Ta có: \(\dfrac{13}{38}>\dfrac{13}{39}=\dfrac{1}{3}.\)

\(\Rightarrow\dfrac{13}{38}>\dfrac{1}{3}.\)

\(b,\sqrt{235}\)\(15.\)

Ta có: \(\sqrt{235};15=\sqrt{225}.\)

\(\sqrt{235}>\sqrt{225}\) (do \(235>225\))

nên \(\sqrt{235}>15.\)

Bình luận (0)
DN
Xem chi tiết
H24
1 tháng 11 2018 lúc 20:39

290=(25)18=3218

536=(52)18=2518

Vì 32>25 nên 3218>2518

=>290>536

b,15=\(\sqrt{225}\) <\(\sqrt{235}\)

=> 15<\(\sqrt{235}\)

c, Ta có: \(\dfrac{1}{3}=\dfrac{13}{39}\)

vì 38<39

nên \(\dfrac{13}{38}>\dfrac{13}{39}\)

Bình luận (0)
LT
1 tháng 11 2018 lúc 20:40

a) 290= (210)9mà 210=(25)2

536= (54)9mà 54=(52)2

Do 25>52nên 290>536

Bình luận (0)
NT
Xem chi tiết
DA
14 tháng 10 2018 lúc 15:46

a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Do : \(8^{100}< 9^{100}\)

=> \(2^{300}< 3^{200}\)

b) Do \(\dfrac{13}{38}>\dfrac{13}{39}\)

Mà : \(\dfrac{13}{39}=\dfrac{1}{3}\)

=> \(\dfrac{13}{38}>\dfrac{1}{3}\)

c)Do : \(\sqrt{235}>\sqrt{225}\)

Mà : \(\sqrt{225}=15\)

=> \(\sqrt{235}>15\)

Bình luận (0)
HT
14 tháng 10 2018 lúc 15:52

a) Ta có:

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Ta thấy 8<9 suy ra \(8^{100}< 9^{100}\)

Vậy \(2^{300}< 3^{200}\)

Bình luận (0)
HT
14 tháng 10 2018 lúc 15:55

b) Ta có:

38<39 suy ra \(\dfrac{13}{38}>\dfrac{13}{39}=\dfrac{1}{3}\)

suy ra \(\dfrac{13}{38}>\dfrac{1}{3}\)

Bình luận (0)
TP
Xem chi tiết
TT
28 tháng 4 2021 lúc 19:11

\(ta có A=\dfrac{13^{15}+1}{13^{16}+1}=\dfrac{13^{15}}{13^{16}}+1\)=\(\dfrac{1}{13}+1\)

B=\(\dfrac{13^{16}+1}{13^{17}+1}=\dfrac{13^{16}}{13^{17}}+1\)=\(\dfrac{1}{13}+1\)

vậy A=B

Bình luận (1)
IT
28 tháng 4 2021 lúc 19:27


\(A=\dfrac{13^{15}+1}{13^{16}+1}vàB=\dfrac{13^{16}+1}{13^{17}+1}\)

ta có

\(\dfrac{13^{16}+1}{13^{17}+1}< 1\Rightarrow\dfrac{13^{16}+1+12}{13^{17}+1+12}=\dfrac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\dfrac{13^{15}+1}{13^{16}+1}=A\)

vậy B<A

 

Bình luận (1)
IT
28 tháng 4 2021 lúc 19:37

\(A=\dfrac{13^{15}+1}{13^{16}+1}vàB=\dfrac{13^{16}+1}{13^{17}+1}\)

ta có B<1 nên

\(\dfrac{13^{16}+1}{13^{17}+1}< \dfrac{13^{16}+1+12}{13^{17}+1+12}=\dfrac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\dfrac{13^{15}+1}{13^{16}+1}=A\)

Vậy B<A

Bình luận (0)
LL
Xem chi tiết
NP
18 tháng 2 2022 lúc 20:23

a)=

b)>

c)=

Bình luận (0)
NK
Xem chi tiết
NT
14 tháng 8 2021 lúc 13:02

Ta có: \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{120}+11\)

=10

Ta có: \(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)

\(=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+...+\dfrac{2}{\sqrt{35}+\sqrt{35}}\)

\(\Leftrightarrow B< 2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{35}+\sqrt{36}}\right)\)

\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}-...-\dfrac{1}{\sqrt{35}}+\dfrac{1}{\sqrt{36}}\right)\)

\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{1}+\dfrac{1}{6}\right)\)

\(\Leftrightarrow B< -\dfrac{5}{3}< 10=A\)

Bình luận (0)
H24
Xem chi tiết
PH
Xem chi tiết
VD
14 tháng 4 2020 lúc 10:14

a)\(\frac{13}{38}\)>\(\frac{1}{3}\)                              b)\(\sqrt{235}\)<15

study well

chúc bạn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
SO
Xem chi tiết