Những câu hỏi liên quan
AV
Xem chi tiết
TN
7 tháng 2 2018 lúc 17:54

\(pt\left(1\right)\Leftrightarrow\left(x-y+2\right)\left(x^2+xy+y^2-2x-4y-8\right)=0\)

Bình luận (0)
LC
Xem chi tiết
TL
26 tháng 6 2020 lúc 20:05

\(\hept{\begin{cases}3x^2-2y^2-xy+12x-17y-15=0\left(1\right)\\\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\left(2\right)\end{cases}}\)

PT (1) \(\Leftrightarrow3x^2-x\left(y-12\right)-2y^2-17y-15=0\)

\(\Leftrightarrow\Delta=\left(y-12\right)^2+4\cdot3\cdot\left(2y^2+17y+15\right)\)

\(\Leftrightarrow\Delta=y^2-24y+144+24y^2+204y+180\)

\(\Leftrightarrow\Delta=25y^2+180y+324\)

\(\Delta=\left(5y+18\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{y-12+5y+18}{3}=2y+2\\x=\frac{y-12-5y-18}{3}=\frac{-4y}{3}-10\end{cases}}\)

\(x=2y+2\)

\(\Leftrightarrow\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\)

\(\Leftrightarrow\sqrt{-2y}+\sqrt{6-2y-2-4y^2-8y-4}=y+\sqrt{2y+5}-\sqrt{y+4}\)

\(\Leftrightarrow\sqrt{-2y}+\sqrt{-4y^2-10y+0}=y+\sqrt{2y+5}-\sqrt{y+6}\)

\(\Leftrightarrow y=0\Rightarrow x=2\)

Vậy (x;y)=(2;0)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
TH
18 tháng 12 2020 lúc 19:36

Đề bài: Giải hệ phương trình:

\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).

Giải:

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).

\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)

\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).

+) TH1: \(x=y+2\): Thay vào (2) ta được:

\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)

\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)

\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)

\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)

\(\Leftrightarrow16y^4+57y^2=0\)

\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).

+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):

\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).

Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).

Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).

Thử lại không có gt nào thỏa mãn.

Vậy...

 

Bình luận (0)
PT
Xem chi tiết
PB
Xem chi tiết
NQ
Xem chi tiết
TD
25 tháng 3 2020 lúc 9:35

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết
ND
18 tháng 10 2020 lúc 11:57

đk: \(x,y\ge0\)

Đặt \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}=a\\\sqrt{xy}=b\end{cases}}\) với \(a,b\ge0\)

\(\Rightarrow x+y=\left(\sqrt{x}+\sqrt{y}\right)^2-2\sqrt{xy}=a^2-2b\)

Khi đó \(HPT\Leftrightarrow\hept{\begin{cases}a+4b=16\\a^2-2b=10\end{cases}}\)

Đến đây thì dễ dàng rồi: \(HPT\Leftrightarrow\hept{\begin{cases}b=\frac{16-a}{4}\\a^2-2b=10\end{cases}}\)

\(\Leftrightarrow a^2-\frac{16-a}{2}=10\)

\(\Leftrightarrow2a^2+a-36=0\)

\(\Leftrightarrow\left(2a^2-8a\right)+\left(9a-36\right)=0\)

\(\Leftrightarrow\left(a-4\right)\left(2a+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=4\\a=-\frac{9}{2}\left(ktm\right)\end{cases}}\Rightarrow\hept{\begin{cases}a=4\\b=\frac{16-4}{4}=3\end{cases}}\)

Gọi \(\sqrt{x},\sqrt{y}\) là 2 nghiệm của PT \(t^2-4t+3=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\Leftrightarrow\left(\sqrt{x};\sqrt{y}\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;9\right);\left(9;1\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
N2
Xem chi tiết
HT
Xem chi tiết