Cho \(\Delta ABC\) vuông tại A có góc B=75 độ; BC= 10cm
a) tính góc C
b) trên cạnh BA kéo dài về phía A đoạn AD=AB, tính diện tích \(\Delta ABD\).
GIÚP MÌNH NGAY NHÉ!
Cho \(\Delta ABC\) vuông tại A có góc B = 75 độ; BC=10 cm
a)Tính góc
b) Trên cạnh BA kéo dài về phía A đoạn AD=AB, tính diện tích \(\Delta CBD\)
(Gợi ý: Hạ đường cao sẽ có \(\Delta\)vuông với góc nhọn = 30 độ
giúp rồi mình tick cho
a)\(\Delta ABC\) có: góc BAC+góc ABC + góc ACB = 180 độ
góc ACB=180 độ -90 độ-75 độ
góc ACB = 15 độ
mình chỉ biết làm ý a thôi
LÀm nhanh ý b giúp nhé
Cho \(\Delta\)ABC có góc B=45, góc C=75, la ( độ dài đường phân giác góc trong kẻ từ đỉnh A)
a) tính ab, bc, ca
b) tính diện tích \(\Delta\)ABC
c) tính R, r, ma
Bạn xem lại đề nhé, còn thiếu dữ kiện gì nhé
Bài 1:
1. Cho \(\Delta\)ABC vuông tại A. Có AB bằng \(\frac{1}{2}\)BC. Tính góc C?
2. Cho \(\Delta\)ABC vuông tại A. Có góc B=30 độ. C/m AC=\(\frac{1}{2}\)BC
3. Cho \(\Delta\)ABC. Có trung tuyến BM=CN. C/m \(\Delta\)ABC cân tại A.
4. Cho \(\Delta\)ABC có trung tuyến AM đồng thời là đường phân giác góc A. C/m \(\Delta\)ABC cân tại A.
Giúp mk nhé mai phải nộp rùi!!!
Bài 1:
Gọi M là trung điểm của BC
Vẽ BE là tia phân giác của góc B, E thuộc AC
nối M với E
ta có: BM =CM = 1/2.BC ( tính chất trung điểm)
AB=1/2.BC (gt)
=> BM = CM= AB ( =1/2.BC)
Xét tam giác ABE và tam giác MBE
có: AB = MB (chứng minh trên)
góc ABE = góc MBE (gt)
BE là cạnh chung
\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)
=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)
=> góc BME = 90 độ
\(\Rightarrow BC\perp AM⋮M\)
Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M
có: BM=CM(gt)
EM là cạnh chung
\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)
=> góc EBM = góc ECM ( 2 cạnh tương ứng)
mà góc EBM = góc ABE = 1/2. góc B (gt)
=> góc EBM = góc ABE = góc ECM
Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)
=> góc EBM + góc ABE + góc ECM = 90 độ
=> góc ECM + góc ECM + góc ECM = 90 độ
=> 3.góc ECM = 90 độ
góc ECM = 90 độ : 3
góc ECM = 30 độ
=> góc C = 30 độ
Cho tứ diện ABCD có \(\Delta\)ABC vuông tại A, AB=6 , AC=8. \(\Delta\)BCD có độ dài đường cao kẻ từ đỉnh C bằng 8. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABC). Tính góc giữa mặt phẳng (ABD) và (BCD) .
Cho tam giác ABC vuông tại A, có góc B=75 độ. Trên tia đối của AB lấy H sao cho BH=2AC. Tính góc BHC???
bạn hãy bấm vào câu hỏi tương tự
tích đúng cho mình nhé bạn
cho tam giac ABC có góc B=75o , góc C=45 độ. trong góc ABC vẽ Bx sao cho góc CBx=15 độ. đường vuông góc với AB tại A cắt Bx ở I. tính góc ICB
cho tam giác ABC vuông tại A biết góc ABC = 60 độ. tia phân giác của góc ABC cắt cạnh ac tại điểm D. qua d kẻ DH vuông góc với BC
a) tính \(\widehat{ABC}\)
b) chứng minh \(\Delta ABD=\Delta HBD\)
c) Chứng minh \(\Delta DHC=\Delta DAK\)
\(a,\widehat{ABC}=60^o\)( theo đề bài )
\(b,\)Xét \(\Delta ABD\)và \(\Delta HBD\)có :
\(BD\)là cạnh chung \(\left(1\right)\)
\(\widehat{B1}=\widehat{B2}=30^o\)( do \(BD\)là tia phân giác của \(\widehat{ABC}\)) \(\left(2\right)\)
Ta có : \(\widehat{D1}=180^o-\widehat{B1}-\widehat{A}\)
\(=180^o-30^o-90^o=60^o\)
\(\widehat{D2}=180^o-\widehat{B2}-\widehat{H1}\)
\(=180^o-30^o-90^o=60^o\)
\(\Rightarrow\widehat{D1}=\widehat{D2}\)\(\left(3\right)\)
Từ : \(\left(1\right);\left(2\right);\left(3\right)\)suy ra : \(\Delta ABD=\Delta HBD\left(g.c.g\right)\)
\(c,\)Không có điểm \(K\)
tam giác ABC vuông tại A,có góc B=75 độ. Trên tia đối của AB lấy H sao cho BH=2AC. Tính góc BHC?
Gọi M là trung điểm của BH => BM = MH = AC
Vẽ tam giác đều BCO => BO = BC = CO
Tam giác ABC vuông tại A => góc BCA = 90o - ABC = 15o
Góc MBO = ABC - OBC = 75o - 60o = 15o
+) Xét tam giác BMO và CAB có: BM = CA; góc MBO = ACB (= 15o) ; BO = CB
=> tam giác BMO = CAB ( c- g- c)
=> góc BMO = CAB = 90o => OM vuông góc với BH
+) Tam giác BOH có: OM là đường cao đông thời là trung tuyến => Tam giác BOH cân tại O
=> BO = OH và góc BHO = HBO = 15o
=> góc BOH = 180o - 2.15o = 150o
+) Ta có góc BOH + HOC + COB = 360o => góc HOC = 360o - BOH - COB = 150o
+) Xét tam giác BOH và COH có: BO = CO; góc BOH = COH; OH chung
=> tam giác BOH = COH ( c- g - c)
=> góc BHO = CHO = 15o
=> góc BHC = 15o + 15o = 30o
Tại sao BM = MH = AC vậy Trần Thị Loan ?
cho \(\Delta\)ABC có AB<AC vuông tại B, phân giác AD của góc A cắt BC tại D. từ D kẻ DH vuông góc với AC (H∈AC);và HD và AB kéo dài cắt tai I. Chứng minh rằng:
a) \(\Delta\)ABC = \(\Delta\)AHD
b) AD là trung trực của BH
c) \(\Delta\)DIC cân
d)BH//IC
e) AD\(\perp\)IC
g) BC > AD + AD - 2AB
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
cho \(\Delta\)ABC vuông tại A có AB>AC . Lấy M là 1 điểm tùy ý . Qua M kể đường thẳng vuông góc với BC và cắt AB tại I ,cắt AC tại D
a/ CM :\(\Delta ABC\sim\Delta MDC\)
b/ CM : BI.BA=BM.BC
c/ CM : góc BAM=góc ICB từ đó CM: AB là tia phân giác góc MAK (\(CI\cap BD\) tại k)
d/ cho AB=8cm và AC=6 cm . Khi AM là tia phân giác trong\(\Delta ABC\) hãy tính diện tích tứ giác AMBD