tìm giá trị nhỏ nhất của \(A=5+\left(2x-1\right)^2\)
các bạn giúp mk nha
Tìm giá trị của x để biểu thức M=\(\left(2x+5\right)^2+2x\left(3x-4\right)-\left(x^2+22\right)\) đạt giá trị nhỏ nhất và giá trị nhỏ nhất bằng bao nhiêu?
Các bạn giúp mình với
= \(4x^2\)+\(20x\)+\(25\)+\(6x^2\)- \(8x\)- \(x^2\)-\(22\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(4\)-\(1\)
=(\(3x\)+\(2\))2-\(1\)
vì (\(3x\)+\(2\))2 >-0
=>.................-\(1\)>-(-1)
(>- là > hoặc =)
=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)
..................................
Tìm giá trị nhỏ nhất của biểu thức:
a) \(A=3.\left|2x-\dfrac{3}{2}\right|+2021^0\)
b) \(B=2.\left|x-6\right|+3.\left(2y-1\right)^2+2021^0\)
Giúp mk nốt bài này nha
a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)
\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)
b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)
\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau:
\(A=\frac{1}{2\left(x-1\right)^2+3}\)
\(B=\frac{13}{17-x}\left(x\in Z\right)\)
Giúp mk nha các bạn! Mk sắp thi rùi! Tks trc!
để A có GTLN thì 2(x-1)2 + 3 phải bé nhất
mà 2(x-1)2 luôn > hoặc = 0
=> A có GTLN thì 2(x-1)2 + 3 = 3
=> x=1
GTLN of A là 1/3 khi và chỉ khi x = 1
để B có GTLN thì 17-x > 0 và bé nhất
=> 17-x = 1
=> x = 16
GTLN của B = 1 khi và chỉ khi x=16
Các bạn làm nhanh lên nhé mình đang rất vội và đừng quên trả lời từng bước nhé ! (Phần 2)
Câu 1) Tìm giá trị nhỏ nhất của các biểu thức sau
A) \(a=3\times\left|1-2x\right|-5\)
B) \(b=\left(2x^2+1\right)^4-3\)
C)\(c=\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2\)
Câu 2)
A) 5 mét dât đồng nặng 47g.Hỏi 10km dây đồng nặng bao nhiêu g ?
B) Một tạ nước biển chứa 2,5kg muối.Hỏi 300g nước biển chứa bao nhiêu kg ?
Câu 3)
Câu 2:
a: 10km=10000m
10000m dây đồng có cân nặng là:
\(47:5\cdot10000=94000\left(g\right)\)
b: 300g=0,3kg=0,003 tạ
0,003 tạ nặng:
\(2,5:1\cdot0,003=\dfrac{3}{400}\left(kg\right)\)
Câu 1:
a:
\(\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|-5>=-5\forall x\)
=>\(A>=-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
=>2x=1
=>x=1/2
Vậy: \(A_{Min}=-5\) khi x=1/2
b: \(2x^2>=0\forall x\)
=>\(2x^2+1>=1\forall x\)
=>\(\left(2x^2+1\right)^4>=1^4=1\forall x\)
=>\(\left(2x^2+1\right)^4-3>=1-3=-2\forall x\)
=>B>=-2\(\forall\)x
Dấu '=' xảy ra khi x=0
c: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)
\(\left(y+2\right)^2>=0\forall y\)
Do đó: \(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+2=0\end{matrix}\right.\)
=>x=1/2 và y=-2
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Giúp mk nha!
1)Tìm giá trị nhỏ nhất của biểu thức sau:
\(\left|x-2002\right|+\left|x-2001\right|\)
2)Cho:\(A=\frac{7!4!}{10!}\cdot\left(\frac{8!}{3!5!}-\frac{9!}{2!5!}\right)\)
1.
a,Tìm giá trị nhỏ nhất của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b, Tìm giá trị lớn nhất của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
2. Cho biểu thức \(E=\frac{3-x}{x-1}\). Tìm các giá trị nguyên của x để
a, E có giá trị nguyên
b, E có giá trị nhỏ nhất
trình bày cách làm nữa nha . làm dc 1 câu cũng dc nha
Tìm giá trị nhỏ nhất của các biểu thức
a) A= / x-1/+2018
b) B=/ x+2 /+ / y-1/ + 10
c) C= \(^{\left(x+1\right)^2}\) + /y-5 /
LƯU Ý: Cái ''/'' là do mk k biết viết dấu giá trị tuyệt đối ạ. mk viết ''/'' là thay cho dấu của giá trị tuyệt đối nha
Các bạn làm sớm và giúp mk với ạ. ai nhanh mà giải đúng là mk sẽ tick cho bạn ấy nha
Cảm ơn nhiều ạ
\(A=\left|x-1\right|+2018\)
ta có :
\(\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-1\right|+2018\ge0+2018\)
\(\Rightarrow\left|x-1\right|+2018\ge2018\)
dấu "=" xảy ra khi :
\(\left|x-1\right|=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
vậy MinA = 2018 khi x = 1
Bạn nào thông minh giải cả 3 câu hộ mình luôn nha. mk đang cần gấp các bạn ơi
\(B=\left|x+2\right|+\left|y-1\right|+10\)
Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\forall x\\\left|y-1\right|\ge0\forall y\end{cases}\Rightarrow\left|x+2\right|+\left|y-1\right|+10\ge10\forall x}\)
\(B=10\Leftrightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left|y-1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}}\)
Vậy \(B_{min}=10\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
\(C=\left(x+1\right)^2+\left|y-5\right|\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^2+\left|y-5\right|\ge0\forall x;y\)
\(C=0\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=5\end{cases}}}\)
Vậy \(C_{min}=0\Leftrightarrow\hept{\begin{cases}x=-1\\y=5\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức sau
\(H=2019-\left|x-y\right|^{2018}-\left|2x+1\right|-\left|4x+2\right|\)
giúp mink vs nha
Giá trị lớn nhất chứ bn , bn xem lại đề hộ mình
Tìm giá trị nhỏ nhất hoặc giá trị bé nhất của các biểu thức sau :
a) \(A=\left|x+\frac{1}{2}\right|-1\)
b) \(B=-\left|x+5\right|-3\)
c) \(C=\left|x+5\right|+x-3\)
d) \(D=\left|x-\frac{1}{2}\right|+\left|x-\frac{1}{3}\right|+\left|x-\frac{1}{4}\right|\)
Ai nhanh nhất mk sẽ tk nha! thank you vinamiu nha!
\(A=\left|x+\frac{1}{2}\right|-1\)
ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)
\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)
\(\Rightarrow A\ge-1\)
\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của A=-1 tại x=-1/2
a) GTTNN là -1
b) GTLN là -3
c) GTNN là -8
d) đang tìm ....
\(B=-\left|x+5\right|-3\)
tacó \(\left|x+5\right|\ge0\forall x\)
\(\Rightarrow-\left|x+5\right|\le0\forall x\)
\(\Rightarrow-\left|x+5\right|-3\le-3\forall x\)
\(\Rightarrow B\le-3\)
\(B=-3\Leftrightarrow x+5=0\Leftrightarrow x=-5\)