Chứng minh tổng sau chia hết cho 3
A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{200}\)
Bài 1
a) Viết tổng sau thành 1 tích
3^4+3^5+3^6+3^7
b)Chứng minh rằng
a)A=1+3+3^2+......3^99 chia hết cho 40
Bài 2 Chứng minh rằng
a) A=5+5^2+5^3+.....+5^2004 cha hết cho 6 ,31,156
b)B=165+2^15 chia hết cho 33
Bài 3 Cho M = 1+2+2^2+....+2^200
a)Viết M+1 dưới dạng lũy thừa
b)N=3+3^2+.....+3^2015
Chứng minh rằng 2N+3 là 1 lũy thừa
Bài 1
a) 34 + 35 + 36 + 37 = 34(1 + 3 + 32 + 33)\
b) a)A = 1 + 3 + 32 +......399 =(1 + 3 + 32 + 33 ) + ...+(396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33 ) + .. +396(1 + 3 + 32 + 33 )
= 40 + ... + 396 . 40
= 40 (1 + 3 +...+ 396) chia hết cho 40
Bài 2
a)
+)A chia hết cho 6
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)
\(A=30+5^2.30+...+5^{2002}.30\)
\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6
+)A chia hết cho 31
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)
\(A=155+5^3.155+...+5^{2001}.155\)
\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31
+) A chia hết cho 156
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)
\(A=780+5^4.780+...+5^{2000}.780\)
\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156
b)B=165+2^15 chia hết cho 33
ta có 165 chia hết cho 33
mà 215 ko chia hết cho 33
vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.
chứng tỏ A= 1+\(3^1\)+\(3^2\)+....+\(3^{99}\)là B(4) và là B (40).
a) C = 3 + 3^2 + 3^3 + 3^4 + ....+ 3^119 + 3^120
chứng minh rằng tổng hiệu sau chia hết cho 4
b) chứng minh A = 1 + 5 +5^2 + ..... + 5^402 + 5^403 + 5^404 chia hết cho 31
c) chứng minh D = 4 + 4^2 + 4^3 + 4^4 +... + 4^2011 + 4&2012 chia hết cho 5
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
tất cả đều có trong câu hỏi tương tự
b)
A=(1+5+52)+(53+54+55)+...(5402+5403+5404)
A=31.1+31.53+...+31.5402
A=31.(1+53+...+5402)
=>A chia hết cho 31
=>Đâu phải con ma
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
huk mìk như pn thuj có 6 đề hsg đây nè
Chứng minh rằng :
A= 1+2+3+...+1995 chia hết cho 1995
B= 2^9 + 2^99 chia hết cho 200
A= 1+2+3+...+1995
=1995+(1+1994)+(2+1993)+...+(996+999)+(997+998)
=1995+1995+1995+...+1995+1995
=1995x998\(⋮1995\)
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào
hãy chứng minh tổng sau chia hết cho:
d=4+42+43+.....+4200 chia hết cho 5
\(D=4+4^2+4^3+4^4+...+4^{200}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{199}+4^{200}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{199}.\left(1+4\right)\)
\(=\left(1+4\right).\left(4+4^3+...+4^{199}\right)\)
\(=5.\left(4+4^3+...+4^{199}\right)⋮5\)
Lần sau ghi đề hẳn hoi đừng đùa
Tham khảo link này nà :
https://olm.vn/hoi-dap/detail/11780416225.html
Love me ??
Chứng minh tổng sau chia hết cho 7:
A=2^1+2^2+2^3+2^4+...+2^59+2^60
Ta có: A = (2 + 22 + 23) + (24 + 25 + 26) + ..........+ (258 + 259 + 260)
= 2 . (1 + 2 + 4 ) + 24.(1+2+4) + ....... + 258.(1+2+4)
= 2.7 + 24.7 + .........+258.7
= 7.(2+24+.....+258)
cho A=1*2*3*...*200*201 và B=1+1/2+1/3 ... +1/200+1/201 chứng minh C=A*B chia hết cho 202
cho A=1*2*3*...*200*201 và B=1+1/2+1/3 ... +1/200+1/201 chứng minh C=A*B chia hết cho 202