Những câu hỏi liên quan
NT
Xem chi tiết
PT
Xem chi tiết
NT
8 tháng 8 2017 lúc 14:43

\(B=1,5+I2-xI\)

\(\Rightarrow B\ge1,5\forall x\)6

Dấu''='' xảy ra <=> 2 - x = 0 <=> x= 2

Vậy giá trị nhỏ 1 của biểu thức là 1,5 khi x=2

\(A=I2x-\frac{1}{3}I+107\)

\(\Rightarrow A\ge107\forall x\)

Dấu''='' xảy ra <=>\(2x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{6}\)

Vậy giá trị nhỏ nhất của A là 107 khi x = \(\frac{1}{6}\).

Tính cái x của câu A mk làm hơi tắc bạn tự tính cho đầ đủ nha .

Bình luận (0)
NT
8 tháng 8 2017 lúc 14:44

\(\forall x\)thôi nha ko phải \(\forall x_6\)đâu mk đánh nhầm á nhe 

Bình luận (0)
PT
11 tháng 8 2017 lúc 19:19

CẢM ƠN BẠN NHA

Bình luận (0)
YB
Xem chi tiết
TL
12 tháng 10 2015 lúc 18:13

Lấy x có giá trị càng lớn thì 2x - 1/3 càng lớn => |2x - 1/3| - 107 càng lớn

=> Biểu thức trên không có giá trị lớn nhất

Bình luận (0)
YB
12 tháng 10 2015 lúc 18:16

Vậy thì còn nhỏ nhất thì sao hả Cô

Bình luận (0)
PT
Xem chi tiết
PT
10 tháng 12 2021 lúc 13:26

A,B,C riêng nha

Bình luận (0)
 Khách vãng lai đã xóa
FT
10 tháng 12 2021 lúc 13:29

A=x2−4x+1=(x−2)2−3≥−3A=x2−4x+1=(x−2)2−3≥−3

⇒Amin=−3⇒Amin=−3 khi x=2x=2

B=4x2+4x+11=(2x+1)2+10≥10B=4x2+4x+11=(2x+1)2+10≥10

⇒Bmin=10⇒Bmin=10 khi x=−12x=−12

C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)

=(x2+5x)2−36≥−36=(x2+5x)2−36≥−36

⇒Cmin=−36⇒Cmin=−36 khi [x=0x=−5[x=0x=−5

D=−x2−8x−16+21=21−(x+4)2≤21D=−x2−8x−16+21=21−(x+4)2≤21

⇒Cmax=21⇒Cmax=21 khi x=−4x=−4

E=−x2+4x−4+5=5−(x−2)2≤5E=−x2+4x−4+5=5−(x−2)2≤5

⇒Emax=5⇒Emax=5 khi x=2

Bình luận (0)
 Khách vãng lai đã xóa
VT
Xem chi tiết
LF
1 tháng 1 2017 lúc 5:57

có cho x dương ko để xài Cosi

Bình luận (12)
HN
11 tháng 3 2017 lúc 11:44

Đề không cho gì hết nên ta xét 2 trường hợp.

Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.

Trường hợp 2: \(x\ge0\) thì ta thấy \(x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.

Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN

Bình luận (0)
HN
11 tháng 3 2017 lúc 11:45

Đề không cho gì hết nên ta xét 2 trường hợp.

Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.

Trường hợp 2: \(x\ge0\) thì ta thấy \(3>x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.

Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN

Bình luận (0)
NL
Xem chi tiết
LT
8 tháng 9 2019 lúc 12:48

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

Bình luận (0)
HL
17 tháng 4 2020 lúc 21:06

eeeee

Bình luận (0)
 Khách vãng lai đã xóa
ZN
17 tháng 4 2020 lúc 21:07

e cái gì là em bé à

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TS
5 tháng 6 2016 lúc 8:51

Đáy lớn là

26 + 8 = 34 M

chIỀU CAO là

26 - 6 = 20 m

Diện tích thửa ruộng là

{ 34 + 26 } x 20 : 2 = 800 m2

Đáp số 800 m2

Bình luận (0)
TN
5 tháng 6 2016 lúc 8:56

1.Để H đạt GTLN

=>|8x+16|+1 đạt giá trị dương nhỏ nhất

=>|8x+16|+1=1

=>MaxH=1

Dấu "=" xảy ra khi x=-2

Vậy...

Bình luận (0)
TT
5 tháng 6 2016 lúc 8:59

1.Để H đạt GTLN

=>|8x+16|+1 đạt giá trị dương nhỏ nhất

=>|8x+16|+1=1

=>MaxH=1

Dấu "=" xảy ra khi x=-2

Vậy...

Bình luận (0)
TT
Xem chi tiết
DH
27 tháng 11 2017 lúc 13:43

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

Bình luận (0)
ND
Xem chi tiết
DH
15 tháng 3 2017 lúc 6:32

\(C=\frac{2\left(x-1\right)^2+1}{x^2-2x+3}=\frac{2\left(x-1\right)^2+1}{\left(x^2-2x+1\right)+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=\frac{2\left[\left(x-1\right)^2+2\right]-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

Để \(2-\frac{3}{\left(x-1\right)^2+2}\) đạt GTNN <=> \(\left(x-1\right)^2+2\)đạt GTNN 

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\) có GTNN là 2 tại x = 1

\(\Rightarrow B_{min}=2-\frac{3}{\left(1-1\right)^2+2}=\frac{1}{2}\) tại \(x=1\)

Bình luận (0)