Những câu hỏi liên quan
MD
Xem chi tiết
NT
Xem chi tiết
NL
22 tháng 2 2021 lúc 22:27

\(\Leftrightarrow x^2-1=2y^2\)

Do vế phải chẵn \(\Rightarrow\) vế trái chẵn \(\Leftrightarrow x\) lẻ

\(\Rightarrow x=2k+1\)

Pt trở thành: \(\left(2k+1\right)^2-1=2y^2\Leftrightarrow2\left(k^2+k\right)=y^2\)

Vế trái chẵn \(\Rightarrow\) vế phải chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

\(\Rightarrow y=2\)

\(\Rightarrow x^2-9=0\Rightarrow x=3\)

Vậy \(\left(x;y\right)=\left(3;2\right)\)

Bình luận (0)
DH
Xem chi tiết
NL
13 tháng 1 2024 lúc 19:45

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

Bình luận (0)
NL
13 tháng 1 2024 lúc 19:50

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)

Bình luận (0)
LA
Xem chi tiết
NL
24 tháng 12 2021 lúc 21:23

\(\Leftrightarrow x^2-1=6y^2\)

Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)

\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)

\(\Rightarrow4\left(k^2+k\right)=6y^2\)

\(\Rightarrow2\left(k^2+k\right)=3y^2\)

Do 2 chẵn  \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

Mà y là SNT \(\Rightarrow y=2\)

Thay vào pt đầu: 

\(x^2+1=6.2^2+2\Rightarrow x=5\)

Vậy (x;y)=(5;2)

Bình luận (0)
PP
25 tháng 3 2022 lúc 15:30

Ta có: \(x^2-1=2y^2\)

Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ

⇒ x= 2k+1

Ta có: \(\left(2k+1\right)^2-1=2y^2\)

⇒ \(4\left(k^2+k\right)=2y^2\)

\(2\left(k^2+k\right)=y^2\)

Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn 

Mà y là số nguyên tố ⇒ y = 2

Ta lại có: \(x^2-1=2.2^2\)

⇒ \(x^2-1=8\)

\(x^2=8+1=9\)

⇒ x= -3 hoặc 3 

Vì x là số nguyên tố nên x =3

Vậy x=3, y=2

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
DA
26 tháng 11 2016 lúc 21:24

(x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Bình luận (0)
SN
26 tháng 11 2016 lúc 21:33

Biến đổi biểu thức tương đương: \(\frac{x^{^2}-1}{2}\) = y2

Ta có: vì x,y là số nguyên dương nên 

+) x > y và x phải là số lẻ

Từ đó đặt x = 2k + 1 ( k nguyên dương)

Biểu thức tương đương 2*k*(k+1) = y2 (*)

Để ý rằng:

y là 1 số nguyên tố nên y2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là:

{1,y,y^2};

Từ (*) dễ thấy y2 chia hết cho 2, dĩ nhiên y2 không thể là 2, vậy chỉ có thể y = 2 \(\Rightarrow\)k = 1

\(\Rightarrow\)x = 3

Vậy ta chỉ tìm được 1 cặp số nguyên tố thỏa mãn đề bài ra là x = 3 và y = 2 (thỏa mãn)

k mình nha

Chúc bạn học giỏi

Mình cảm ơn bạn nhiều

Bình luận (0)
HP
26 tháng 11 2016 lúc 21:55

1 lũ copy :

\(x^2-2y^2=1< =>x^2-1=2y^2< =>\left(x-1\right)\left(x+1\right)=2y^2=y.2y\)

+)x-1=2 và x+1=y2

=>x=3 và x+1=y2 nên y2=4=>y=2 (t/mãn là số nguyên tố)

+x-1=y và x+1=2y

=>x=y+1 và x+1=2y=>(y+1)+1=2y=>y+2=2y=>y=2 ,khi đó x=3 (t/mãn là số nguyên tố)

Vậy (x;y)=(3;2)

Bình luận (0)
PA
Xem chi tiết
PQ
5 tháng 11 2015 lúc 12:32

(x-2y)-(x+2y)=1

x-2y=1

x+2y=1

tính hệ phương trình là ra

tick nhaPhùng Thị Vân Anh

^_^

Bình luận (0)
NH
6 tháng 12 2016 lúc 20:48

x^2-2y^2=1

x^2=2y^2+1 suy ra xlà số lẻ

Suy ra x=2m+1 suy ra (2m+1)^2=2y^2+1

Suy ra 4m^2+4m+1=2y^2+1

Suy ra 2m^2+2m=y^2

Suy ra y^2 chia hết cho 2

Suy ra y chia hết cho 2

Suy ra y=2

Khi đó x^2 -8=1

Suy ra x=3

Bình luận (0)
ML
Xem chi tiết
LV
29 tháng 3 2016 lúc 22:08

PT:

<=>x2=2y2+1 (là một số c/p lẻ )

<=>x2=2y2+1=1  (mod dư 4)

mà y và x là số nguyên tố

=>y=2 và x=3

Bình luận (0)
TK
Xem chi tiết
TA
Xem chi tiết