Tính a+b biết ab-ac+bc-c2=1(a,b,c thuộc Z)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c thuộc Z biết ab-ac+bc-c2=-1
chứng mih rằng hai sso a va b doi nhau
ab-ac+bc-c2=-1
=> a.(b-c)+c.(b-c)=-1
=> (b-c).(a+c)=-1
=> (b-c).(a+c)=-1.1=1.(-1)
+) b-c=-1; a+c=1
=> (b-c)+(a+c) = b-c+a+c = a + b = -1 + 1 = 0
=> a và b đối nhau
+) b-c=1; a+c=-1
=> (b-c)+(a+c) = b-c+a+c = a + b = 1 + (-1) = 0
=> a và b đối nhau
Vậy 2 số a và b đối nhau.
Cho a,b,c ∈ Z thoả mãn ab - ac + bc - c2 = -1. Tính giá trị biểu thức M a+ b
\(ab-ac+bc-c^2=-1\)
<=> \(a\left(b-c\right)+c\left(b-c\right)=-1\)
<=> \(\left(a+c\right)\left(b-c\right)=-1\)
Mà \(a,b,c\in Z\Rightarrow\left\{{}\begin{matrix}a+c\in Z\\b-c\in Z\end{matrix}\right.\)
- Nếu \(\left\{{}\begin{matrix}a+c=1\\b-c=-1\end{matrix}\right.\) => a + b = 0
- Nếu \(\left\{{}\begin{matrix}a+c=-1\\b-c=1\end{matrix}\right.\) => a + b = 0
Vậy M = 0
Cho a,b,c thuộc Z, biết ab - ac + bc - c^2 = -1. Tính tổng a+b
Cho a,b,c thuộc Z, biết ab - ac + bc - c2 = -1. Tính tổng a+b
Mn giúp em!
Cho a, b, c ∈ Z. Biết ab - ac + bc - c2 = -1.
Chứng minh rằng a và b là hai số đối nhau.
ab - ac + bc - c2= -1
a(b-c) + c(b-c) = -1
(a+b) . (b-c) = -1
Nếu a + c = 1 thì b - c = -1
a = 1 - c; b = c - 1
Vậy a và b là hai số đối nhau.=>(đpcm)
Cho a,b,c thuộc Z biết ab - ac + bc - c2 = -1. Tính tổng a+b
Ta có: (ab - ac)+ (bc - cc) = -1
=> a. (b - c)+ c. (b - c)= -1
=> (b - c). (a + c)= -1
=> b-c và a+c thuộc Ư(-1)={-1;1}
Vậy b-c=1 và a+c=-1 hoặc a+c=1 và b-c=-1
ta thấy b-c và a+c luôn luôn đối nhau
ta sẽ có: a+c=-(b-c)
=>a+c=-b+c
=>a = -b
Vậy a và b đối nhau nên sẽ có tổng là 0
Cảm ơn bạn Ma Ca Row đã giúp mình làm bài này. Mình cũng đã gặp rắc rối khi giải bài này. Cảm ơn bạn.
Thân ái,
Cao Thành Long
cho ab - ac + bc - c2 = -1 với a;b;c E Z . khi đó a+b=
ab-ac+bc-c2=-1
=>a.(b-c)+c.(b-c)=-1
=>(b-c)(a+c)=-1=1.(-1)=(-1).1
=>b-c=1 và a+c=-1 hoặc b-c=-1 hoặc a+c=1
=>(b-c)+(a+c)=1+(-1) hoặc (b-c)+(a+c)=-1+1
=>b-c+a+c=0 hoặc b-c+a+c=0
=>a+b=0
Tìm a,b,b thuộc Z biết ab-ac+bc-c^2= -1
Cho các số nguyên a, b, c:
a)Tính giá trị biểu thức: $M=ab-ac+b^2-bc$M=ab−ac+b2−bc trong đó $a+b=0$a+b=0
b)Biết $ab-ac+bc-c^2=-1$ab−ac+bc−c2=−1. Chứng minh a,b là 2 số đối nhau
a = 2;b= (-2);c= 3
Thay : a+b+c=2+(-2)+3
. =[2+(-2)]+3
=0+3=3
B)vì a và b là 2 số đối nhau nên ta có :
a =2;b= (-2) và là 2số đối nhau vì
|-2|=2