Chứng minh rằng nếu xyz=1 thì:
\(\dfrac{1}{1+x+xy}\)+\(\dfrac{1}{1+y+yz}\)+\(\dfrac{1}{1+z+xz}\)=1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng nếu \(\dfrac{x^2-yz}{x\left(1-yz\right)}=\dfrac{y^2-xz}{y\left(1-xz\right)}\). Với \(x\ne y;xyz\ne0;yz\ne1;xz\ne1\). Thì: \(xy+xz+yz=xyz\left(x+y+z\right)\)
Cho x, y, z thoả mãn xyz = 2023.
Chứng minh: \(\dfrac{2023x}{xy+2023x+2023}+\dfrac{y}{yz+y+2023}+\dfrac{z}{xz+z+1}=1\)
Có `xyz=2023=>2023=xyz`
Thay vào ta có :
\(\dfrac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz+1+z}{1+xz+z}=1\left(dpcm\right)\)
a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)
cho xyz=2006
Chứng minh rằng :
\(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}=1\)
\(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(xz+z+1\right)}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{xz}{xz+z+1}+\dfrac{1}{xz+z+1}+\dfrac{z}{xz+z+1}=\dfrac{xz+z+1}{xz+z+1}=1\)
Ta có: \(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}=1\)
\(\Leftrightarrow\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)
\(\Leftrightarrow\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+x+1}\)
\(\Leftrightarrow\dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+x+1}\)
\(\Leftrightarrow\dfrac{xz+1+z}{1+xz+z}=1\left(đpcm\right)\)
_Chúc bạn học tốt_
Cho x, y, z khác 0, \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Chứng minh rằng: \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích
\(P=a^3+b^3+c^3-3abc\)
\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.
Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).
Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm
Cho xyz= 1. Tính GTBT A = \(\dfrac{x}{xy+x+1}\)+ \(\dfrac{y}{yz+y+1}\)+ \(\dfrac{z}{xz+z+1}\)
\(A=\dfrac{x}{xy+x+1}+\dfrac{xy}{x.yz+xy+x}+\dfrac{xy.z}{xy.xz+xy.z+xy}\)
\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{1+xy+x}+\dfrac{1}{x+1+xy}\)
\(=\dfrac{x+xy+1}{xy+x+1}=1\)
Cho C=(xy+yz+xz)(\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\));D=xyz(\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\));E=\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\).Tính (C-D):E
Các thánh giúp e nha Ace Legona Nguyễn Huy Tú Toshiro Kiyoshi Phương An Akai Haruma @Nguyễn Vũ Phượng Thảo
Cho xyz = 1, tính P= \(\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+ỹx+1}+\dfrac{z+2zx+1}{z+zx+zy+1}\)
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Tính biểu thức: \(P=\dfrac{x}{-xy+x+1}-\dfrac{y}{yz-y+1}+\dfrac{z}{xz+z-1}\) với \(xyz=1\) và các mẫu khác 0