Những câu hỏi liên quan
SK
Xem chi tiết
AT
21 tháng 4 2017 lúc 10:45

Giải bài 16 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

Bình luận (0)
PN
14 tháng 11 2017 lúc 20:28

a) Tìm MTC: x3 – 1 = (x – 1)(x2 + x + 1)

Nên MTC = (x – 1)(x2 + x + 1)

Nhân tử phụ:

(x3 – 1) : (x3 – 1) = 1

(x – 1)(x2 + x + 1) : (x2 + x + 1) = x – 1

(x – 1)(x2+ x + 1) : 1 = (x – 1)(x2 + x + 1)

Qui đồng:

Giải bài 16 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

b) Tìm MTC: x + 2

2x – 4 = 2(x – 2)

6 – 3x = 3(2 – x)

MTC = 6(x – 2)(x + 2)

Nhân tử phụ:

6(x – 2)(x + 2) : (x + 2) = 6(x – 2)

6(x – 2)(x + 2) : 2(x – 2) = 3(x + 2)

6(x – 2)(x + 2) : -3(x – 2) = -2(x + 2)

Qui đồng:

Giải bài 16 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

click mh nha
Bình luận (1)
HH
Xem chi tiết
HN
29 tháng 7 2021 lúc 14:57

cho mình hỏi là giữa khác phân số với nhua là phải có dấu như là công, trừ, nhân hay chia chứ? 

Bình luận (0)
DR
Xem chi tiết
NT
17 tháng 2 2021 lúc 13:19

a) MTC: \(12x^3y^3\)

\(\dfrac{3}{4x^3y^2}=\dfrac{3\cdot3y}{4x^3y^2\cdot3y}=\dfrac{9y}{12x^3y^3}\)

\(\dfrac{2}{3xy^3}=\dfrac{2\cdot4x^2}{3xy^3\cdot4x^2}=\dfrac{8x^2}{12x^3y^3}\)

b) MTC: \(x\left(x-3\right)^2\)

\(\dfrac{5}{x^2-6x+9}=\dfrac{5}{\left(x-3\right)^2}=\dfrac{5x}{x\left(x-3\right)^2}\)

\(\dfrac{3}{x^2-3x}=\dfrac{3}{x\left(x-3\right)}=\dfrac{3\left(x-3\right)}{x\left(x-3\right)^2}=\dfrac{3x-9}{x\left(x-3\right)^2}\)

Bình luận (0)
NP
Xem chi tiết
PT
16 tháng 11 2017 lúc 10:49

\(x^2+4x+4=\left(x+2\right)^2\)

\(3x+6=3\left(x+2\right)\)

MTC: \(3\left(x+2\right)^2\)

\(\dfrac{x+5}{x^2+4x+4}=\dfrac{\left(x+5\right).3}{\left(x+2\right)^2.3}=\dfrac{3\left(x+5\right)}{3\left(x+2\right)^2}\)

\(\dfrac{x}{3x+6}=\dfrac{x\left(x+2\right)}{3\left(x+2\right)\left(x+2\right)}=\dfrac{x\left(x+2\right)}{3\left(x+2\right)^2}\)

Bình luận (0)
NQ
Xem chi tiết
NQ
Xem chi tiết
NT
7 tháng 12 2021 lúc 21:12

Bài 2:

a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)

\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)

Bình luận (0)
H24
Xem chi tiết
AH
13 tháng 12 2021 lúc 22:15

Lời giải:
$\frac{4x^2-3x+8}{x^3-1}$
$\frac{2x}{x^2+x+1}=\frac{2x(x-1)}{(x-1)(x^2+x+1)}=\frac{2x^2-2x}{x^3-1}$

$\frac{6}{1-x}=\frac{-6(x^2+x+1)}{(x-1)(x^2+x+1)}=\frac{-6x^2-6x-6}{x^3-1}$

Bình luận (0)
NT
Xem chi tiết
SK
Xem chi tiết
DQ
24 tháng 7 2017 lúc 21:29

a) \(\dfrac{3x}{2x+4}\)\(\dfrac{x+3}{x^2-4}\)

Phân tích các mẫu thức thành nhân tử :

\(2x+4 = 2(x+2)\)

\(x^2 - 4 = (x-2)(x+2)\)

MTC : \(2(x+2)(x-2)\)

Nhân tử phụ của mẫu thức : \(2x + 4\)\((x - 2)\)

\(x^2 - 4\)\(2\)

QĐ: \(\dfrac{3x}{2x+4}=\dfrac{3x}{2\left(x+2\right)}=\dfrac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x+3}{x^2-4}=\dfrac{x+3}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)

b) \(\dfrac{x+5}{x^2+4x+4}\)\(\dfrac{x}{3x+6}\)

Phân tích các mẫu thức thành nhân tử :

\(x^2+4x+4 = (x+2)^2\)

\(3x + 6\) \(= 3(x+2)\)

MTC : \(3(x+2)^2\)

Nhân tử phụ của mẫu thức : \(x^2 + 4x +4 \)\(3\)

\(3x + 6\)\((x+2)\)

QĐ : \(\dfrac{x+5}{x^2+4x+4}=\dfrac{\left(x+5\right)}{\left(x+2\right)^2}=\dfrac{3\left(x+5\right)}{3\left(x+2\right)^2}\)

\(\dfrac{x}{3x+6}=\dfrac{x}{3\left(x+2\right)}=\dfrac{x\left(x+2\right)}{3\left(x+2\right)^2}\)

Bình luận (0)
LN
Xem chi tiết
LD
23 tháng 11 2020 lúc 22:04

MTC : ( x - 1 )( x2 + x + 1 )

Ta có : \(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
25 tháng 11 2020 lúc 21:06

Hnay mới học thì hnay trả lời nhá :P

\(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1}\)

Ta có : \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2+x+1=x^2+x+1\)

MTC : \(\left(x-1\right)\left(x^2+x+1\right)\)

\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
25 tháng 11 2020 lúc 21:09

\(\frac{2x}{x^2+x+1};\frac{6}{x-1}\)

Ta có : \(x^2+x+1=x^2+x+1\)

\(x-1=x-1\)

MTC : \(\left(x^2+x+1\right)\left(x-1\right)=x^3-1\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{2x^2-2x}{x^3-1}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{6x^2+6x+6}{x^3-1}\)

Bình luận (0)
 Khách vãng lai đã xóa