Tìm cặp nguyên x,y thỏa mãn pt:
\(2015\left(x^2+y^2\right)-2014\left(2xy+1\right)=25\)
Tìm cặp số nguyên x,y thỏa mãn pt:
2015(x^2+y^2)-2014(2xy+1)=25
Tìm cặp số nguyên x,y thỏa mãn pt:
2015(x^2+y^2)-2014(2xy+1)=25
Câu hỏi của mk giống bn. Hỏi xong mk mới thấy đó
Á chết, ấn nhầm rồi phải ở trong khanhhuyen6a5 chớ
Tìm cặp số nguyên (x;y) thỏa mãn đẳng thức:
\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(y^2+2xy-3x-2=0\)
\(y^2+2xy-3x-2=0\)
\(\Leftrightarrow\left(y^2+2xy+x^2\right)-\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)
Nếu \(x+1=0\) thì \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\).
Nếu \(x+2=0\) thì \(\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
Thử lại, ta thấy thỏa mãn. Vậy ta tìm được các cặp số \(\left(x;y\right)\) thỏa mãn đề bài là \(\left(-1;1\right),\left(-2;2\right)\)
Tìm tất cả các cặp số nguyên \(\left(x;y\right)\) thỏa mãn phương trình: \(x^2-25=y\left(y+6\right)\)
\(x^2-25=y\left(y+6\right)\)
\(\Leftrightarrow x^2-25=y^2+6y\)
\(\Leftrightarrow x^2-25-y^2-6y=0\)
\(\Leftrightarrow x^2-\left(y^2+6y+9\right)-16=0\)
\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-3\right)=16\)
\(\Leftrightarrow\left(x+y+3\right);\left(x-y-3\right)\in\left\{-1;1;-2;2;-4;4;-8;8;-16;16\right\}\)
Ta giải các hệ phương trình sau :
1) \(\left\{{}\begin{matrix}x+y+3=-1\\x-y-3=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-4\\x-y=-15\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-11\left(loại\right)\\x-y=-15\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x+y+3=1\\x-y-3=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\x-y=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=17\left(loại\right)\\x-y=19\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+y+3=2\\x-y-3=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-6\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x+y+3=-2\\x-y-3=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-5\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}x+y+3=-4\\x-y-3=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-7\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
6) \(\left\{{}\begin{matrix}x+y+3=4\\x-y-3=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=8\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}x+y+3=-8\\x-y-3=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-11\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-6\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}x+y+3=8\\x-y-3=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\x-y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=0\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}x+y+3=-16\\x-y-3=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-19\\x-y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-17\left(loại\right)\\x-y=2\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x+y+3=16\\x-y-3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=15\\x-y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=19\left(loại\right)\\x-y=4\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(5;-6\right);\left(-5;0\right);\left(-3;-2\right);\left(4;-3\right);\left(-5;-6\right);\left(5;0\right)\right\}\)
Tìm tất cả các cặp số nguyên (x,y) nguyên thỏa mãn:
\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(2y-4\right)=5\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm tất cả các cặp (x; y) nguyên thỏa mãn \(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=5\)
Giải
5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )
= [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2 )
= ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )
= A2 - 4 ( A - 2 )
<=> A2 - 4.A + 3 = 0
<=> \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)
Lưu ý : đặt : A = xy - x - 2y + 4
TH1 : xy - x - 2.y + 4 = 3
<=> xy - x - 2y + 1 = 0
<=> x.( y - 1 ) - 2.(y-1 ) = 1
<=> ( x - 2 ) ( y - 1 ) = 1
Ta có bảng :
x-2 | 1 | -1 |
y - 1 | 1 | -1 |
x | 3 | -1 |
y | 2 | 0 |
TH2 : xy - x - 2y + 4 = 1
<=> ( x- 2 ) . ( y -1 ) =-1
x-2 | -1 | 1 |
y - 1 | 1 | -1 |
x | -1 | 3 |
y | 2 | 0 |
Tìm tất cả các cặp (x; y) nguyên thỏa mãn \(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)
\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)
<=> \(x^2y^2+\left(x+2y-4\right)^2-2\left(x-2\right)\left(2y-2\right)-2xy\left(x+2y-4\right)=0\)
<=> \(\left[x^2y^2-2xy\left(x+2y-4\right)+\left(x+2y-4\right)^2\right]-4\left(xy-x-2y+2\right)=0\)
<=> \(\left(xy-x-2y+4\right)^2-4\left(xy-x-2y+4\right)+8=0\)
<=> \(\left(xy-x-2y+2\right)^2+4=0\)(vô nghiệm)
=>phương trình vô nghiệm