cho a/b+c=b/a+c=c/a+b
tinh a=b+c/a+a+c/b+a+b/c
cho a+b-c/c=b+c-a/a=c+a-b/b tinh P=(1+b/a).(1+c/b).(1+a/c)
https://olm.vn/hoi-dap/detail/16292582469.html
Có bài y như bạn, tham khảo nha.
~ Học tốt ~
cho a,b,c khac 0 va a+b-c/c =b+c-a/a=c+a-b/b tinh p=(1+b/a)(1+c/b)(1+a/c)
Ta có \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
=> \(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Nếu a + b + c = 0
=> a + b = -c
b + c = -a
a + c = -b
Khi đó P = \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=\frac{-abc}{abc}=-1\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
=> a = b = c
Khi đó P \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy khi a + b + c = 0 thì P = -1
khi a + b + c \(\ne\)0 thì P = 8
cho a,b,c la ba so thuc ,thoa man a+b-c/c=b+c-a/a=c+a-b/b. tinh (1+b/a)(1+a/c)(1+c/b)
\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\frac{a+b+c}{c}=\frac{b+c+a}{a}=\frac{c+a+b}{b}\)
=>a=b=c
=>A=(1+b/a)(1+a/c)(1+c/b) = (1+1)(1+1)(1+1) =2.2.2 =8
cho biết a +b +c +d khác 0 và a/(b+c+d)=b/(a+c+d)=c/(a+b+d)=d/(a+b+c)
tinh GTBT (a+b)/(c+d)+(b+c)/(a+d)+(c+d)/(a+b)+(d+a)/(b+c)
cho a+b+c=2016 va 1/(a+b)+1/(b+c)+1/(c+a)=1/90 tinh S=a/(b+c)+b/(c+a)+c/(a+b)
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(\Rightarrow S=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{c+a}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)
\(\Rightarrow S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2016.\frac{1}{90}-3=\frac{97}{5}\)
Vậy....................
cho a,b,c # doi 1 va a+b/c=b+c/a=c+a/b. tinh
M=(1+ a/b)(1+ b/c)(1+ c/a)
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\) (cộng 3 vế với 1)
TH1: \(a+b+c=0\)
Khi đó: \(M=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
TH2: \(a=b=c\) (ko thỏa mãn a,b,c đôi 1 khác nhau)
Vây M = -1
Chúc bạn học tốt.
ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2.\left(a+b+c\right)}{a+b+c}.\)
Nếu \(a+b+c\ne0\)thì \(\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
=> a + b = 2c
b+c = 2a
=> a-c = 2.(c-a)
=> c=a ( trái với đề bài)
=> a + b +c = 0
\(\Rightarrow M=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{c+b}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{c}=-1\)
Cho a+b+c+d khac 0 va a/b+c+d=b/a+c+d=c/a+b+d=d/a+b+c.
Tinh gia tri A= a+b/c+d + b+c/a+d + c+d/a+b + d+a/b+ch
Cho a+b+c=0. Tinh Q=\((\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b})(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a})\)
Ta có: a + b + c = 0 => a + b = -c; b + c = -a; a + c = -b
a + b + c = 0 <=> a + b = -c
<=> (a + b)3 = (-c)3
<=> a3 + 3a2b + 3ab2 + b3 = -c3
<=> a3 + b3 + c3 = -3ab(a + b)
<=> a3 + b3 + c3 = 3abc (vì a + b = -c)
Khi đó: Q = \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)
Q = \(1+\frac{a\left(a-b\right)}{c\left(b-c\right)}+\frac{b\left(a-b\right)}{c\left(c-a\right)}+\frac{c\left(b-c\right)}{a\left(a-b\right)}+1+\frac{b\left(b-c\right)}{a\left(c-a\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}+\frac{a\left(c-a\right)}{b\left(b-c\right)}+1\)
Q = \(3+\left(\frac{a\left(a-b\right)}{c\left(b-c\right)}+\frac{a\left(c-a\right)}{b\left(b-c\right)}\right)+\left(\frac{b\left(a-b\right)}{c\left(c-a\right)}+\frac{b\left(b-c\right)}{a\left(c-a\right)}\right)+\left(\frac{c\left(b-c\right)}{a\left(a-b\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}\right)\)
Q = \(3+\frac{ab\left(a-b\right)+ac\left(c-a\right)}{bc\left(b-c\right)}+\frac{ab\left(a-b\right)+bc\left(b-c\right)}{ac\left(c-a\right)}+\frac{bc\left(b-c\right)+ca\left(c-a\right)}{ab\left(a-b\right)}\)
Q = \(3+\frac{a\left(ab-b^2+c^2-ac\right)}{bc\left(b-c\right)}+\frac{b\left(a^2-ab+bc-c^2\right)}{ac\left(c-a\right)}+\frac{c\left(b^2-bc+ac-a^2\right)}{ab\left(a-b\right)}\)
Q = \(3+\frac{a\left[a\left(b-c\right)-\left(b-c\right)\left(b+c\right)\right]}{bc\left(b-c\right)}+\frac{b\left[b\left(c-a\right)-\left(c-a\right)\left(c+a\right)\right]}{ac\left(c-a\right)}+\frac{c\left[c\left(a-b\right)-\left(a-b\right)\left(a+b\right)\right]}{ab\left(a-b\right)}\)
Q = \(3+\frac{a\left[a-\left(b+c\right)\right]}{bc}+\frac{b\left(b-\left(c+a\right)\right)}{ac}+\frac{c\left[c-\left(a+b\right)\right]}{ab}\)
Q = \(3+\frac{a\left(a+a\right)}{bc}+\frac{b\left(b+b\right)}{ac}+\frac{c\left(c+c\right)}{ab}\)
Q = \(3+\frac{2a^2}{bc}+\frac{2b^2}{ac}+\frac{2c^2}{ab}\)
Q = \(3+\frac{2a^3+2b^3+2c^3}{abc}\)
Q = \(3+\frac{2\left(a^3+b^3+c^3\right)}{abc}\)
Q = \(3+\frac{2.3abc}{abc}=3+6=9\)
Bài làm:
Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)
\(\Leftrightarrow abc.M=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(\Leftrightarrow abc.M=ab\left(a-b\right)+b^2c-bc^2+c^2a-ca^2\)
\(\Leftrightarrow abc.M=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow abc.M=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)
\(\Leftrightarrow abc.M=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
\(\Rightarrow M=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{abc}\)
Đặt \(N=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right).N=c\left(b-c\right)\left(c-a\right)+a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)\)
Mà \(a+b+c=0\Rightarrow\hept{\begin{cases}a=-b-c\\b=-c-a\\c=-a-b\end{cases}}\)
Thay vào ta được:
\(N=\frac{c\left(b-c\right)\left(c-a\right)-\left(b+c\right)\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{c\left(c-a\right)\left(b-c-a+b\right)+b\left(a-b\right)\left(b-c-c+a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{c\left(c-a\right)\left(2b-c-a\right)+b\left(a-b\right)\left(a+b-2c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{c\left(c-a\right)\left(2b+b\right)+b\left(a-b\right)\left(-c-2c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{3bc\left(c-a\right)-3bc\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{3bc\left(b+c-2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{9abc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
Mà \(Q=M.N=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{abc}.\frac{9abc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=9\)
Vậy Q = 9
Cho a+b+c=2010 va 1/(a+b)+1/(b+c)+1/(c+a)=1/3
Tinh S=a/(b+c)+b/(c+a)+c/a+b
\(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2010.\frac{1}{3}=670\)
\(\Rightarrow S=670-3=667\)