cho:x+y+z=0;x^2+y^2+z^2=1 thì ta có:x5+y5+z5=5/4(2x3 - x)
Cho:x+y+z=0;xy+yz+zx=0.Cmr:x=y=z
Ta có : \(x+y+z=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\Leftrightarrow x^2+y^2+z^2=0\) (Vì xy+yz+zx = 0)
Vì \(x^2\ge0;y^2\ge0;z^2\ge0\Rightarrow x^2+y^2+z^2=0\Leftrightarrow x^2=y^2=z^2=0\Leftrightarrow x=y=z=0\)
Cho:x=a/m, y=b/m, z=a+b/2m(a,b,m thuoc Z, m khac 0)Chung to :x<z<y
Bạn xem bài này nhé! http://olm.vn/hoi-dap/question/602769.html
cho:x+y+z=0;x^2+y^2+z^2=1. Chứng minh x5+y5+z5=5/4 (2x3 - x)
cho:x+y+z=0;x^2+y^2+z^2=1. Chứng minh x5+y5+z5=5/4 (2x3 - x)
\(Cho:x+y+z=0\)
\(CMR:\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)
Ta có
\(\left(x^2+y^2+z^2\right)^2-2\left(x^4+y^4+z^4\right)\)
\(=2x^2y^2+2y^2z^2+2z^2x^2-x^4-y^4-z^4\)
\(=\left(z^2x^2+2z^2xy+z^2y^2\right)+\left(z^2x^2-2z^2xy+z^2y^2\right)+\left(-x^4+2x^2y^2-y^4\right)-z^4\)
\(=z^2\left(x+y\right)^2+z^2\left(x-y\right)^2-\left(x^2-y^2\right)^2-z^4\)
\(=z^2\left(\left(x+y\right)^2-z^2\right)-\left(x-y\right)^2\left(\left(x+y\right)^2-z^2\right)\)
\(=\left(\left(x+y\right)^2-z^2\right)\left(z^2-\left(x-y\right)^2\right)\)
\(=\left(x+y+z\right)\left(x+y-z\right)\left(z-x+y\right)\left(z+x-y\right)=0\)
Vậy \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)
x+y+z=0
=> x=-(y+z) => x2=y2+2yz+z2
=> 2yz=x2-y2-z2=> 4y2z2=x4+y4+z4-2x2y2-2x2z2+2y2z2
=> 2x2y2+2x2z2+2y2z2= x4+y4+z4 (1)
mặt khác (x2+y2+z2)2=x4=y4+z4+2x2y2+2x2z2+2y2z2 (2)
từ (1)(2) ta được (x2+y2+z2)2=2(x4+y4+z4)
đây bài này,ai lm đc l i k e cả tháng:
cho:x+y+z=0;x^2+y^2+z^2=1
thì ta có:x^5+y^5+z^5=5/4(2x^3-x)
cho:x+y+z=0;x^2+y^2+z^2=1. Chứng minh x5+y5+z5=5/4 (2x3 - x)
đây,đố ai đấy,ai lm đc thích l i k e 1 năm tao cx l i k e người đó
Tìm x,y,z thuộc Z sao cho:x+y+z=xyz
Cho:x,y,z khác 0 thỏa (x+y+z)2=x2+y2+z2
CMR:1/x3+1/y3+1/z3=3/xyz
\(\left(x+y+z\right)^2=x^2+y^2+z^2\\ \Leftrightarrow xy+yz+xz=0\\ \Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Đặt
\(\dfrac{1}{x}=a;\dfrac{1}{y}=b;\dfrac{1}{z}=c\\ vìa+b+c=0\\ \Rightarrow a^3+b^3+c^3=3abc\\ \Rightarrow\left(\dfrac{1}{x}\right)^3+\left(\dfrac{1}{y}\right)^3+\left(\dfrac{1}{z}\right)^3=\dfrac{3}{xyz}\)