(x+1)+(x+2)+(x+3)+...+(x+100)=5750
(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+3+...+100)=5750
100x+5050=5750
100x=5750-5050
100x=700
x=700/100
x=7
(x+1) + (x+2) + (x+3) +....+ (x+100) = 5750
\(\Leftrightarrow100x+5050=5750\)
hay x=7
(x+1) + (x+2) + (x+3) +....+ (x+100) = 5750
x + 1 + x + 2 + x + 3 +...+ x + 100 = 5750
(x + x + x +...+ x) + (1 + 2 + 3 +...+ 100) = 5750
100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
x+1+x+2+x+3+.......x+100=5750
=>100x+5050=5750
=>100x=700
=>x=7
x(x+1)+(x+2)+(x+3)+...+(x+100)=5750
x(x+1)+(x+2)+(x+3)+...+(x+100)=5750
=> (x+x+x+x+...+x)+(1+2+3+...+100)=5750
=> 101x+5050=5750
101x = 5750-5050
101x = 700
x = 700 : 101
x = 700/101
Tìm x biết: (x+1)+(x+2)+(x+3)+...+(x+100)=5750
x+x+x+...x+ 1+2+3+...100 = 5750
100.x + 101.50 = 5750
100.x = 5757-5050
100.x = 700
x = 700: 100
x = 7
(x + 1) + (x + 2) + (x + 3) + ... + (x + 100) = 5750
(x + 1) + (x + 2) + (x + 3) + ... + (x + 100) = 5750
=> x + 1 + x + 2 + x + 3 + ... + x + 100 = 5750
=> (x + x + x + .... + x) + (1 + 2 + 3 + 4 + ... + 100) = 5750 (100 số hạng x)
=> 100x + \(\left[\left(100-1\right):1+1\right].\left(\frac{100+1}{2}\right)\) = 5750
=> 100x + \(100.\frac{101}{2}\)= 5750
=> 100x + 5050 = 5750
=> 100x = 5750 - 5050
=> 100x = 700
=> x = 700 : 100
=> x = 7
#)Giải :
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+100\right)=5750\)(mỗi cặp có 100 số hạng)
\(\Leftrightarrow x\times100+5050=5750\)
\(\Leftrightarrow x\times100=700\)
\(\Leftrightarrow x=7\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(x100+\left(1+2+3+...+100\right)=5750\)
\(x100+\left(101+101+...+101\right)=5750\)có 50 số 101
\(x100+\left(101.50\right)=5750\)
\(x100+5050=5750\)
\(x100=5750-5050\)
\(x100=700\)
\(x=700:100=7\)
(x+1)+(x+2)+(x+3)+....+(x+100)=5750
Ta có:
(x + 1) + (x + 2) + ... +(x + 100) = 5750
100x + 1 +2 + 3 + 4 + 5 +... + 100= 5750
100x + \(\frac{1+100}{2}\) = 5750
100x + 1+ 100 = 11500
100x = 11399
x = 113,99
(x+1)+(x+2)+(x+3)+...+(x+100)=5750
(x+1)+(x+2)+(x+3)+...+(x+100)=5750
=>(x+x+x+...+x)+(1+2+3+4+....100)=5750
100 số 100 số
=>100x+(100+1)*100:2=5750
=>100x+5050
=>100x=5750-5050
=>100x=700
=>x=700:100
=>x=7
Vậy x=7
(x + 1) + (x + 2) + (x + 3) + ... + (x + 100) = 5750
(x + x + x + ... + x) + (1 + 2 + 3 + .. + 100) = 5750
100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 7
(x + 1) + (x + 2) + (x + 3) + ... + (x + 100) = 5750
=> (x + x + x + ... + x) + (1 + 2 + 3 + ... + 100) = 5750
có 100 số x có 100 số hạng
=> 100x + (1 + 100).100 : 2 = 5750
=> 100x + 101.100 : 2 = 5750
=> 100x + 5050 = 5750
=> 100x = 5750 - 5050
=> 100x = 700
=> x = 700 : 100
=> x = 7
Vậy x = 7
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) =5750
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) =5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+100\right)=5750\)
\(\Leftrightarrow\left(x+x+x+....+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Leftrightarrow100x+\frac{\left(1+100\right).100}{2}=5750\)
\(\Leftrightarrow100x+5050=5750\)
\(\Leftrightarrow100x=700\)
\(\Leftrightarrow x=7\)