Tìm x, y, z trong các trường hợp sau:
2x = 3y = 5z và | x - 2y | =5
Tìm x,y,z trong trường hợp sau:
2x=3y=5z và |x-2y|=5
Bài 2 : Tìm x , y . z trong các trường hợp sau :
a) 2x = 3y = 5z và / x - 2y / = 5
b) 5x = 2y , 2x = 3z và xy = 90
Tìm x , y , z trong các trường hợp sau :
a) 2x=3y=5z và | x - 2y | = 5
b ) 5x = 2y ; 2x = 3z và xy = 90
c ) ( y + z + 1 ) / x = ( x + z + 2 ) / y = ( x + y - 3 ) / z = 1 / ( x + y + z)
Tìm x,y,z trong các trường hợp :
a) 2x = 3y = 5z và | x - 2y | = 5
b) 5x = 2y ; 2x = 3z và xy = 90
c) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
tìm x,y,z trong các trường hợp sau:
a,2x=3y=5z và lx-2yl=5 b,5x=2y,2x=3z và xy=90
ai làm nhanh mk tích đúng cho nhé !!!!!!!!!!!!!!!!!!!!!!!!!!!!!
b) 5x=2y ; 2x=3z <=> x/10=y/4=z/15
Đặt k ta có : \(\frac{x}{10}=\frac{y}{4}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}\frac{x}{10}=k\Rightarrow x=10k\\\frac{y}{4}=k\Rightarrow y=4k\\\frac{z}{15}=k\Rightarrow z=15k\end{cases}}\)
x.y=10k.4k=40.k2=90
=> k2=2,25
=> k=1,5
x=10k=10.1,5=15
y=4k=4.1,5=6
z=15k=15.1,5=22,5
Vậy ...
b)Ta có:5x=2y => \(\frac{x}{2}\)= \(\frac{y}{5}\)<=> \(\frac{x}{6}\)= \(\frac{y}{15}\)(1)
2x=3z => \(\frac{x}{3}\)= \(\frac{z}{2}\)<=> \(\frac{x}{6}\)= \(\frac{z}{4}\)(2)
Từ (1) và (2) suy ra: \(\frac{x}{6}\)= \(\frac{y}{15}\)= \(\frac{z}{4}\)
Đặt \(\frac{x}{6}\)= \(\frac{y}{15}\)= \(\frac{z}{4}\)= k
Suy ra:x=6k,y=15k,z=4k
Ta có: xy=6k.15k=90k2=90
=> k2=1
=> k=1 hoặc k=-1
Nếu k=1 thì x=6,y=15,z=4
Nếu k=-1 thì x=-6,y=-15,z=-4
Vậy.....
Chúc các bạn hk tốt!
Tìm x,y,z trong các trường hợp sau:
a,2x=3y=5z và /x-2y/=5
b,5x=2y,2x=3z và xy =90
c,\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Làm nhanh giúp mk nha!(giải chi tiết)
ai làm nhanh nhất mk tick cho!
thanks!
\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5
Áp dụng tính chất DTSBN ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)
x/1/2 = -30 => x = -15
y/1/3 = -30 => y = -10
z/1/5 = -30 => z = -6
TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)
x/1/2 = 30 => x = 15
y/1/3 = 30 => y = 10
z/1/5 = 30 => z= 6
a,
2x=3y=5z
=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
mà l x-2y l =5
=>x-2y=5 hoặc x-2y=-5
nếu x-2y=5
=>x/15=2y/20=x-2y/15-20=5/-5=-1
=>x=-15
=>y=-10
=>z=-6
nếu x-2y=-5
=>x/15=2y/20=x-2y=-5/-5=1
=>x=15
=>y=10
=>z=6
còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm ! đăng câu khác mik làm tiếp cho !
Tìm x, y , z trong các trường hợp sau :
a, \(2x=3y=5z\)và \(|x-2y|=5\)
b, \(5x=2y,2x=3z\)và \(xy=90\)
c, \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Theo đề: \(\left|x-2y\right|=5\)
\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )
\(x-2y=-5\) (nếu \(x< 2y\) )
Vậy có hai trường hợp
TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)
TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)
b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)
Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)
\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)
\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)
c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
= \(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
= \(\frac{2x+2y+2z}{x+y+z}\)
= \(\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x
=> y + z + x + 1 = 3x
=> 1/2 + 1 = 3x
=> 3/2 = 3x
=> x = 3/2 : 3 = 1/2
=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y
=> x + z + y + 2 = 3y
=> 1/2 + 2 = 3y
=> 5/2 = 3y
=> y = 5/2 : 3 = 5/6
=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z
=> x + y + z - 3 = 3z
=> 1/2 - 3 = 3z
=> 3z = -5/2
=> z = -5/2 : 3 = -5/6
Vậy ...
c) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Suy ra: \(\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\)
\(\Leftrightarrow y+z=\frac{1}{2}-x\) (1)
Ta có: \(\frac{y+z+1}{x}=2\Rightarrow y+z+1=2x\) (2)
Từ (1) và (2) => \(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
\(\Rightarrow y+z=\frac{1}{2}-\frac{1}{2}=0\Rightarrow y=-z\)
Lại có: \(\frac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow y-2z=\frac{5}{2}\Rightarrow-3z=\frac{5}{2}\Rightarrow z=\frac{-5}{6}\)
\(\Rightarrow y=-z=-\left(\frac{-5}{6}\right)=\frac{5}{6}\)
Vậy (x;y;z)=(\(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\) )
Tìm x,y,z trong các trường hợp sau
a) \(\frac{1}{2}.x=\frac{2}{3}.y=\frac{3}{4}.z\)và x-y=15
b) 4x=3y,5y=4z và 2x+3y+5z=86
b)Ta có: 4x=3y =) x/3=y/4
5y=4z =) y/4=z/5
Do đó suy ra: x/3=y/4=z/5 =) 2x/6=3y/12=5z/25
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
2x/6=3y/12=5z/25=2x+3y+5z/6+12+25=86/43=2
=) 2x/6=2=)x=6; 3y/12=2=)y=8; 5z/25=2=)z=10
Vậy x=6; y=8; z=10
ban do lam dung roi do
k tui nha
thanks
Tìm x, y, z trong ác trường hợp sau:
a) 2x = 3y = 5z và | x - 2y | =5;
b) 5x = 2y, 2x = 3z và xy = 90;
c) \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
a: Ta có: 2x=3y=5z
=>2x/30=3y/30=5z/30
=>x/15=y/10=z/6
Trường hợp 1: x-2y=5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{5}{-5}=-1\)
Do đó: x=-15; y=-10; z=-6
Trường hợp 2: x-2y=-5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{-5}{-5}=1\)
Do đó: x=15; y=10; z=6
b: Ta có: 5x=2y
nên x/2=y/5
=>x/6=y/15
Ta có: 2x=3z
nên x/3=z/2
=>x/6=z/4
=>x/6=y/15=z/4
Đặt x/6=y/15=z/4=90
=>x=6k; y=15k; z=4k
Ta có; xy=90
\(\Leftrightarrow90k^2=90\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
=>x=6; y=15; z=4
TRường hợp 2: k=-1
=>x=-6; y=-15; z=-4