Những câu hỏi liên quan
BL
Xem chi tiết
KA
2 tháng 11 2021 lúc 7:27

Giả sử √aa là số hữu tỉ .

Đặt √a=pqa=pq (p; q ∈∈ N; q khác 0 và (p;q) = 1)

=> a=p2q2a=p2q2 => a.q2 = p2

Vì plà số chính phương nên a.q2 viết được dưới dạng tích của các số với lũy thừa bằng 2

Mà p; q nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)

=> Điều giả sử sai

Vậy √aa là số vô tỉ

Bình luận (0)
 Khách vãng lai đã xóa
CU
Xem chi tiết
DH
Xem chi tiết
LT
4 tháng 12 2014 lúc 19:08

Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.

Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)

Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.

Bình luận (0)
H24
6 tháng 3 2020 lúc 18:09

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl

Bình luận (0)
 Khách vãng lai đã xóa
AA
Xem chi tiết
LH
25 tháng 7 2019 lúc 16:30

giả sử \(\sqrt{a}\) là số hữu tỉ

\(\sqrt{a}=\frac{m}{n}\) (m, n thuộc N*); (m,n) = 1

do a không phải scp nên \(\frac{m}{n}\)không phải stn 

do đó n > 1

ta có: m2 = a.n2

gọi p là ước nguyên tố nào đó của n

thì m2 chia hết cho p, do đó m chia hết cho p

như vậy p là ước số nguyên tố của m, n, trái với (m, n) = 1

=> \(\sqrt{a}\)là số vô tỉ

Bình luận (0)
H24
6 tháng 3 2020 lúc 18:10

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
TS
30 tháng 5 2017 lúc 20:48

Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k. 

Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ. 
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2 
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2. 
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn) 

Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.

Bình luận (0)
PA
29 tháng 5 2017 lúc 20:56

Tham khảo nè bác :)

Câu hỏi của Đỗ Văn Hoài Tuân - Toán lớp 7 - Học toán với OnlineMath

Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k. 

Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ. 

Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2 => p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2. 

Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn) Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ

(đ.p.c.m)

Bình luận (0)
NH
29 tháng 5 2017 lúc 21:02

=>căn n =a/b(b khác 0)(số hữu tỉ có thể biểu diễn như vậy)

<=> n=a^2/b^2

<=>a^2=b*c^2

mà a^2 và b^2 là hai số chính phương

=> n là số chính phương

=> trái giả thiết => giả sứ sai

=>a ko phải là số chính phương => căn a là số vô tỉ

Bình luận (0)
GD
Xem chi tiết
LT
Xem chi tiết
CL
Xem chi tiết
KS
7 tháng 9 2016 lúc 15:01
Giả sử rằng  là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .Như vậy  có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.Thay (6) vào (3) ta có: (2k)2 = 2b2  4k2 = 2b2  2k2 = b2.Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận  là một số hữu tỉ là sai và phải kết luận  là số vô tỉ.

Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."

Bình luận (0)
KS
7 tháng 9 2016 lúc 15:03
Giả sử rằng  là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .Như vậy  có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.Thay (6) vào (3) ta có: (2k)2 = 2b2  4k2 = 2b2  2k2 = b2.Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận  là một số hữu tỉ là sai và phải kết luận  là số vô tỉ.

Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."

tích mik nha

Bình luận (0)
H24
5 tháng 10 2016 lúc 16:06

Cho tam giác ABC vuông tại A,đường cao AH.Gọi E,F lần lượt là trung điểm AHvà BH,CE cắt AF tại I. Chứng minh AF vuông góc với CE

Bình luận (0)
LT
Xem chi tiết
YN
25 tháng 1 2020 lúc 16:22

Giả sử \(\sqrt{10}\)là số hữu tỉ  \(\Rightarrow\sqrt{10}=\frac{a}{b}\) ( vs \(\frac{a}{b}\)là phân số tối giản, \(a,b\in Z;b\ne0\))

Ta có \(\frac{a}{b}=\sqrt{10}\Rightarrow\left(\frac{a}{b}\right)^2=10\Rightarrow\frac{a^2}{b^2}=10\Rightarrow a^2=10b^2\)

=> \(a^2\) là số chẵn ( vì 10 là số chẵn)

\(\Rightarrow a\) chẵn ( do căn bậc hai của 1 số chẵn là số chẵn)  (1)

\(\Rightarrow a=2k\left(k\in Z\right)\)

Thay a = 2k vào \(a^2=10b^2\) ta có

\(\left(2k\right)^2=10b^2\)

\(\Rightarrow4k^2=10b^2\)

\(\Rightarrow2k^2=5b^2\)

\(\Rightarrow5b^2\) là số chẵn

\(\Rightarrow b^2\) là số chẵn

\(\Rightarrow b\) chẵn ( do do căn bậc hai của 1 số chẵn là số chẵn )           (2)

Từ (1) và (2) => Phân số \(\frac{a}{b}\) chưa tối giản vs giả thiết đưa ra

Vậy \(\sqrt{10}\) là số vô tỉ

Có j sai sót mong bỏ qua

                  ~ HAPPY NEW YEAR ~

Bình luận (0)
 Khách vãng lai đã xóa