Những câu hỏi liên quan
NA
Xem chi tiết
H24
4 tháng 11 2017 lúc 14:38

Theo đề bài, ta có:

\(\frac{x}{\frac{7}{2}}=\frac{y}{\frac{9}{2}}\)và \(x+y=32\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{7}{2}}=\frac{y}{\frac{9}{2}}=\frac{x+y}{\frac{7}{2}+\frac{9}{2}}=\frac{32}{\frac{16}{2}}=\frac{32}{8}=4\)

\(\Rightarrow\frac{x}{\frac{7}{2}}=4\Rightarrow x=\frac{7}{2}\cdot4=14\)

\(\Rightarrow\frac{y}{\frac{9}{2}}=4\Rightarrow y=\frac{9}{2}\cdot4=18\)

Vậy x=14;y=18

Bình luận (0)
LT
Xem chi tiết
QL
Xem chi tiết
HM
20 tháng 9 2023 lúc 22:01

Ta có tỉ thức : \(\dfrac{3}{7} = \dfrac{9}{{21}}\)

Xét \(\dfrac{{3 + 9}}{{7 + 21}}\) = \(\dfrac{{12}}{{28}}\) = \( = \dfrac{3}{7}\)( chia cả tử và mẫu cho 4 )

Xét \(\dfrac{{3 - 9}}{{7 - 21}}\) = \(\dfrac{{ - 6}}{{ - 14}}\)\( = \dfrac{3}{7}\)( chia cả tử và mẫu cho 2 )

Sau khi thực hiện tính các tỉ số ta thấy các kết quả sau khi tối giản của tỉ số bằng với các tỉ só trong tỉ lệ thức đã cho.

Bình luận (0)
YP
Xem chi tiết
JL
Xem chi tiết
KK
10 tháng 1 2019 lúc 10:19

a) Ta có : 7x = 5z => x/5 = z/7 => x/15 = z/21 (1)

               x/3 = y/2 => x/15 = y/10 (2)

Từ (1) và (2) suy ra \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)

Áp dụng t/c của dãy tỉ số bằng nhau

Ta có : \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)=> \(\frac{4x}{60}=\frac{3y}{30}=\frac{2z}{42}=\frac{4x-3y-2z}{60-30-42}=\frac{-2}{-12}=\frac{1}{6}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{1}{6}\\\frac{y}{10}=\frac{1}{6}\\\frac{z}{21}=\frac{1}{6}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{6}.15=\frac{15}{6}\\y=\frac{1}{6}.10=\frac{5}{3}\\z=\frac{1}{6}.21=\frac{7}{2}\end{cases}}\)

Vậy ...

Bình luận (0)
H24
Xem chi tiết
TH
Xem chi tiết
KY
Xem chi tiết
NT
1 tháng 5 2021 lúc 20:29

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bình luận (0)
NT
1 tháng 5 2021 lúc 20:30

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

Bình luận (0)
NT
1 tháng 5 2021 lúc 20:32

Bài 2: 

b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)

nên \(\dfrac{y}{12}=\dfrac{z}{28}\)

mà \(\dfrac{x}{11}=\dfrac{y}{12}\)

nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)

hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)

mà 2x-y+z=152

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)

Vậy: (x,y,z)=(44;48;112)

Bình luận (0)
ND
Xem chi tiết