tìm 2 số x,y biết chúng có tổng 32 và tỉ lệ với các số \(\dfrac{7}{2}\) và \(\dfrac{9}{2}\)
tìm 2 số x,y biết chúng có tổng 32 và tỉ lệ với các số \(\dfrac{7}{2}\) và \(\dfrac{9}{2}\)
Theo đề bài, ta có:
\(\frac{x}{\frac{7}{2}}=\frac{y}{\frac{9}{2}}\)và \(x+y=32\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{7}{2}}=\frac{y}{\frac{9}{2}}=\frac{x+y}{\frac{7}{2}+\frac{9}{2}}=\frac{32}{\frac{16}{2}}=\frac{32}{8}=4\)
\(\Rightarrow\frac{x}{\frac{7}{2}}=4\Rightarrow x=\frac{7}{2}\cdot4=14\)
\(\Rightarrow\frac{y}{\frac{9}{2}}=4\Rightarrow y=\frac{9}{2}\cdot4=18\)
Vậy x=14;y=18
Tìm 3 phân số, biết rằng tổng của chúng bằng \(\dfrac{213}{70}\), các tử của chúng tỉ lệ với 3; 4; 5 và các mẫu của chúng tỉ lệ với 5; 1; 2
Cho tỉ lệ thức \(\dfrac{3}{7} = \dfrac{9}{{21}}\). Hãy tính các tỉ số \(\dfrac{{3 + 9}}{{7 + 21}}\) và \(\dfrac{{3 - 9}}{{7 - 21}}\) rồi so sánh chúng với các tỉ số trong tỉ lệ thức đã cho.
Ta có tỉ thức : \(\dfrac{3}{7} = \dfrac{9}{{21}}\)
Xét \(\dfrac{{3 + 9}}{{7 + 21}}\) = \(\dfrac{{12}}{{28}}\) = \( = \dfrac{3}{7}\)( chia cả tử và mẫu cho 4 )
Xét \(\dfrac{{3 - 9}}{{7 - 21}}\) = \(\dfrac{{ - 6}}{{ - 14}}\)\( = \dfrac{3}{7}\)( chia cả tử và mẫu cho 2 )
Sau khi thực hiện tính các tỉ số ta thấy các kết quả sau khi tối giản của tỉ số bằng với các tỉ só trong tỉ lệ thức đã cho.
tìm x;y
A) \(\dfrac{2}{5}x-\dfrac{1}{3}=-1\dfrac{1}{2}:\dfrac{5}{4}\)
B) x;y tỉ lệ thuận với 5 và 3 và x+y=32
c) x;y tỉ lệ nghịch với 5 và 3 và x+y = 32
a) Tìm 3 số x, y, z biết rằng : x / 3 = y / 2; 7x = 5z và 4x - 3y - 2z = -2
b) Tìm ba phân số tối giản, biết rằng tổng của chúng bằng bốn 9/10 ( hỗn số ); các tử số củ chúng tỉ lệ với 2,3, 4 còn các mẫu số tương ứng tỉ lệ với 5, 4, 3.
a) Ta có : 7x = 5z => x/5 = z/7 => x/15 = z/21 (1)
x/3 = y/2 => x/15 = y/10 (2)
Từ (1) và (2) suy ra \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau
Ta có : \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)=> \(\frac{4x}{60}=\frac{3y}{30}=\frac{2z}{42}=\frac{4x-3y-2z}{60-30-42}=\frac{-2}{-12}=\frac{1}{6}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{1}{6}\\\frac{y}{10}=\frac{1}{6}\\\frac{z}{21}=\frac{1}{6}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{6}.15=\frac{15}{6}\\y=\frac{1}{6}.10=\frac{5}{3}\\z=\frac{1}{6}.21=\frac{7}{2}\end{cases}}\)
Vậy ...
TÌm 3 phân số biết tổng của chúng bằng \(1\dfrac{1}{70}\) , các tử của chúng tỉ lệ với 3;4;5 và các mẫu tương ứng của chúng tỉ lệ với 5;1;2
Tìm 2 số dương x và y biết tổng và hiệu của chúng tỉ lê nghịch với 4 và 6,tổng và tích của chúng tỉ lệ thuận với 7 và 2
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
1. Tìm x thuộc Q :
(x + 2/7) . (x - 5/13) > 0.
2. Tìm 2 phân số tối giản biết hiệu của chúng là 3/196 ; các tử tỉ lệ với 3 và 5 ; các mẫu tương ứng tỉ lệ với 4 và 7.
3. Tìm x,y,z, biết :
12x - 15y/7 = 20z - 12x/9 = 15y - 20z/11 và x + y + z = 48.