cho a,b,c la ba so duong thoa man a+b+c=1 CMR:c+ab/a+b + a+bc/b+c + b+ac/a+c \(\ge\) 2
Cho a,b,c la so duong thoa man a2+b2+c2=3. Chung minh rang
8(2-a)(2-b)(2-c)>=(a+bc)(b+ac)(c+ab)\(\ge\)
Cho 3 so duong a,b,c thoa man ab+bc+ac=3abc.Chung minh(a/a2+bc)+(b/b2+ac)+(c/c2+ba)<=3/2
cho a,b,c,x,y,z la cac so nguyen duong thoa man a^x=bc;b^y=ac;c^z=ab. chung minh xyz-x-y-z=2
Cho a,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Cho a,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Cho a,b,c la ba so thuc duong thoa man (a^2).(b+c)=(b^2).(a+c)=20172018.tinh (c^2).(a+b)
Choa,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Cô si:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(b+c\right)}.\frac{\left(a+b\right)}{8}.\frac{\left(b+c\right)}{8}}=\frac{3a}{4}\)
Tương tự với 2 cục còn lại, công theo vế:
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{a+b+c}{4}\text{ }\left(dpcm\right)\)
cho a,b,c la ba so thuc duong thoa man dieu kien a+b+c=1
chung minh rang P=\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
lấy bút xóa mà xóa hết là khỏe
cho a, b, c la cac so thuc duong thoa man a + b + c =abc chung minh rang :
\(\frac{1}{a^2\left(1+bc\right)}+\frac{1}{b^2\left(1+ac\right)}+\frac{1}{c^2\left(1+ab\right)}\le\frac{1}{4}\)
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)