Những câu hỏi liên quan
H24
Xem chi tiết
DH
Xem chi tiết
HN
3 tháng 9 2016 lúc 21:24

\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho cả 2 và 3 . Mà (2,3) = 1 nên n(n+1)(n+2) chia hết cho 6.

Từ đó có đpcm

Bình luận (0)
TL
3 tháng 9 2016 lúc 21:24

\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

=>đpcm

Bình luận (0)
LH
3 tháng 9 2016 lúc 21:26

\(n^2\left(n+1\right)+2n\left(n+1\right)=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Có: \(n;n+1;n+2\) là ba số tự nhiên liên tiếp nên chia hết cho cả 2 và 6.

Mà: \(\text{Ư}CLN\left(n\left(n+1\right)\left(n+2\right)\right)=1\) nên \(n\left(n+1\right)\left(n+2\right)⋮2.3=6\) (đpcm)

Bình luận (0)
NQ
Xem chi tiết
H24
8 tháng 8 2017 lúc 9:16

ặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.

Bình luận (0)
NH
Xem chi tiết
HL
3 tháng 12 2017 lúc 18:55

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

Bình luận (0)
H24
28 tháng 10 2018 lúc 16:56

Chép hả Lý

Bình luận (0)
PN
Xem chi tiết
MN
Xem chi tiết
VQ
Xem chi tiết
NQ
6 tháng 8 2017 lúc 17:10

A=n*6 + n*4 -2n²=n².(n-1)(n+1)(n²+2)

-Nếu n chia hết cho 3 =>A chia hết cho 9

-Nếu n chia 3 dư 1 =>n-1 và n²+2 chia hết cho 3=> A chia hết cho 9

-Nếu n chia 3 dư 2=>n+1 và n²+2 chia hết cho 3=>A chia hết cho 9

do đó A chia hết cho 9 (1)

-Nếu n chia hết cho 2=>n² chia hết cho 4 và n²+2 chia hết cho 2=>A chia hết cho8

-Nếu n không chia hết cho 2=> trong 2 số n-1 và n+1 có 1 số chia hết cho 2 và 1 số chia hết cho 4=>A chia hết cho8

 do đó, A chia hết cho 8 (2)

từ (1) và (2) => A chia hết cho 72

k cho mk nha

Bình luận (0)
NQ
6 tháng 8 2017 lúc 17:10

k cho mk nha bn

Bình luận (0)
VQ
6 tháng 8 2017 lúc 17:15

Vì sao \(n\cdot6+n\cdot4-2n^2=n^2\cdot\left(n-1\right)\left(n^2+2\right)\)

Bình luận (0)
QP
Xem chi tiết
PN
Xem chi tiết
PD
28 tháng 2 2018 lúc 21:50

Áp dụng tính chất  : a^n - b^n chia hết cho a - b thì : 

4^2n+2 - 1 = 4^2.(n+1) - 1 = (4^2)^n+1 - 1 = 16^n+1 - 1^n+1 chia  hết cho 16-1 = 15

=> ĐPCM


 

Bình luận (0)
NQ
28 tháng 2 2018 lúc 21:36

Áp dụng tính chất  : a^n - b^n chia hết cho a - b thì : 

4^2n+2 - 1 = 4^2.(n+1) - 1 = (4^2)^n+1 - 1 = 16^n+1 - 1^n+1 chia  hết cho 16-1 = 15

=> ĐPCM

Tk mk nha

Bình luận (0)
LK
28 tháng 2 2018 lúc 21:37

Ta có:

\(4^{2n+2}-1\)

\(=16^n\cdot16-1\)

Mà \(16\equiv1\)(mod 15)

Do đó: \(4^{2n+2}-1\equiv1^n\cdot1-1=0\)(mod 15)

Vậy .................

Bình luận (0)