Những câu hỏi liên quan
HT
Xem chi tiết
NQ
25 tháng 2 2018 lúc 15:21

+, 3a+2b chia hết cho 17

=> 9.(3a+2b) chia hết cho 17

=> 27a + 18b chia hết cho 17

Mà 17a và 17b đều chia hết cho 17

=> 27a+18b-17a-17b chia hết cho 17

=> 10a+b chia hết cho 17

+, 10a+b chia hết cho 17

=> 10a+b+17a+17b chia hết cho 17

=> 27a+18b chia hết cho 17

=> 9.(3a+2b) chia hết cho 17

=> 3a+2b chia hết cho 17 ( vì 9 và 17 là 2 số nguyên tố cùng nhau )

Vậy ............

Tk mk nha

Bình luận (1)
HM
2 tháng 7 2018 lúc 11:27

\(3a+2b⋮17\)\(\left(a,b\inℤ\right)\)

\(\Rightarrow10\cdot\left(3a+2b\right)⋮17=\left(30a+20b\right)⋮17\)

\(10a+b⋮17\)

\(\Rightarrow3\cdot\left(10a+b\right)⋮17=\left(30a+3b\right)⋮17\)

\(\Rightarrow\left(30a+20b\right)-\left(30a+3b\right)⋮17\)

\(\Rightarrow30a+20b-30a-3b⋮17\)

\(\Rightarrow17b⋮17\)

Có \(17⋮17\)nên \(10a+b⋮17\)

Bình luận (0)
TQ
Xem chi tiết
AH
11 tháng 11 2023 lúc 16:58

Lời giải:
$3a+2b\vdots 17$
$\Rightarrow 3a+2b+17a\vdots 17$

$\Rightarrow 20a+2b\vdots 17$

$\Rightarrow 2(10a+b)\vdots 17$

$\Rightarrow 10a+b\vdots 17$ (do $(2,17)=1$)

Ta có đpcm.

Bình luận (0)
NT
Xem chi tiết
KD
31 tháng 7 2016 lúc 17:15

 (10a+b) - (3a +2b) = 20a + 2b - 3a -2b

 = 17a 

Vì 17chia hết cho17=> 17a chia hết cho 17

 => 2.(10a+b)- (3a +2b) chia hết cho 17

 Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17

Mà (2,17) =1=> 10a+b chia hết cho 17

                  Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17

Bình luận (0)
H24
23 tháng 10 2017 lúc 12:34

Vậy số đó chia hết cho 17

k cho mk nha

Bình luận (0)
H24
6 tháng 11 2017 lúc 6:24

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

Bình luận (0)
NM
Xem chi tiết
TY
Xem chi tiết
NT
20 tháng 2 2015 lúc 19:27

ta đặt A=10a+b

B=3a+2b

có 2A-B=2(10a+b)-(3a+2b)

2A-B=(20a+2b)-(3a+2b)

2A-B=17a chia hết cho 17

vì A chia hết cho 17 nên 2A chia hết cho 17

mà 2A-B chia hết cho 17 nên B chia hết cho 17

chứng minh 1a+b chia hết cho 17 thì 3a+2b chia hết cho 17

 

Bình luận (0)
NT
20 tháng 2 2015 lúc 19:32

xin lỗi dòng cuối mình viết là 10a+b chứ ko phải 1a+b

Bình luận (0)
H24
27 tháng 2 2017 lúc 20:24

mình cũng giống bạn thảo

Bình luận (0)
NT
Xem chi tiết
CM
22 tháng 2 2015 lúc 11:08

Ta có : 2.(10a+b) - (3a +2b) = 20a + 2b - 3a -2b

                                         = 17a 

          Vì 17chia hết cho17=> 17a chia hết cho 17

                                       => 2.(10a+b)- (3a +2b) chia hết cho 17

  Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17

                     Mà (2,17) =1=> 10a+b chia hết cho 17

                  Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17

Bình luận (0)
H24
2 tháng 12 2016 lúc 12:34

cho 3a + 2b chia het cho 17 chung minyh rang 10a + b chia het cho 17

Bình luận (0)
VD
20 tháng 12 2017 lúc 7:14

Ta có:            3a+2b chia hết cho 17

                      17a chia hết cho 17 

Suy ra: 17a + 3a+ 2b chia hết cho 17

Suy ra: (17a + 3a) + 2b chia hết cho 17    

Suy ra:20a + 2b chia hết cho 17

Suy ra:(20a + 2b)chia 2 sẽ chia hết cho 17

Suy ra:10a +b chia hết cho 17

                                 Vậy 10a + b chia hết cho 17

Bình luận (0)
H24
Xem chi tiết
an
5 tháng 1 2016 lúc 15:51

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

Bình luận (0)
H24
6 tháng 11 2017 lúc 6:21

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

Bình luận (0)
DH
21 tháng 11 2021 lúc 21:22

a )  Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17

b )  Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17

Bình luận (0)
NL
Xem chi tiết
DD
Xem chi tiết
TS
29 tháng 11 2015 lúc 15:02

CHTT nha Đặng Hoàng Diệp

Bình luận (0)
NP
29 tháng 11 2015 lúc 15:05

 Gọi 3a+2b=x;10a+b=y

2y=2(10a+b)=20a+2b

2y-x=(20a+2b)-(3a+2b)=17a chia hết cho 17 mà 3a+2b chia hết cho 17

=>20a+2b chia hết cho 17

=>10a+b chia hết cho 17    

                                                                   tick nha

Bình luận (0)