Những câu hỏi liên quan
CC
Xem chi tiết
ND
21 tháng 9 2023 lúc 21:35

Ta có : \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)

\(=\left(k^2+k\right)\left(k+2\right)-\left(k^2-k\right)\left(k+1\right)\)

\(=k^3+2k^2+k^2+2k-k^3+k\)

\(=3k^2+3k\)

\(=3k\left(k+1\right)\left(VP\right)\)

\(\Rightarrowđpcm\)

Bình luận (0)
NH
22 tháng 9 2023 lúc 11:42

k(k+1)(k+2) -(k-1)k(k+1)

=k(k+1)(k + 2 - k + 1)

= 3k(k+1)  đpcm

 

Bình luận (0)
TH
Xem chi tiết
DT
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
TD
10 tháng 6 2018 lúc 16:22

a) Xét trên tử

Ta có :

1.5.6 + 2.10.12 + 4.20.24 + 9.45.54

= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6

= 1.5.6 ( 2^3 + 4^3 + 9^3 )

Xét mẫu

Ta có :

1.3.5 + 2.6.10 + 4.12.20 + 9.27.45

= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5

= 1.3.5 ( 2^3 + 4^3 + 9^3 )

Ta có 

A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2

b) Ta có :

 k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )

Ta có :

S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )

\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3

3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]

3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3S = n(n + 1)(n + 2)

S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bình luận (0)
PT
Xem chi tiết
NB
31 tháng 1 2016 lúc 19:00

mình ko biết

Bình luận (0)
NM
Xem chi tiết
NQ
28 tháng 2 2016 lúc 17:50

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3 . k . (k + 1)

k . (k + 1) . [(k + 2) - (k - 1)]

= k . (K + 1) . 3 = 3 . k . (K + 1) => ĐPCM 

Bình luận (0)
TT
28 tháng 2 2016 lúc 17:56

Ta có k(k+1)(k+2) là tích 3 stn nên chia hết cho 6 

         k(k-1)(k+1) là tích 3 stn nên chia hết cho 6

do đó VT chia hết cho 6

xét vế phải  k(k+1) chia hết cho 2 mà nhân thêm 3 nên sẽ chia hết cho 6

VP chia hết cho 6

Do đó với mọi k thuộc N ta luôn có được nghiệm của bài 

Bình luận (0)