Những câu hỏi liên quan
YN
Xem chi tiết
KK
3 tháng 9 2020 lúc 15:28

\(\cos C=\sqrt{1-\sin^2C}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}\)

\(\Rightarrow\cos C=\frac{4}{5}\)

\(\Rightarrow\tan C=\frac{\sin C}{\cos C}=\frac{3}{5}:\frac{4}{5}=\frac{3}{4}\)và \(\cot C=\frac{4}{3}\)

Ta có: \(\widehat{C};\widehat{B}\)là hai góc phụ nhau

\(\Rightarrow\hept{\begin{cases}\sin C=\cos B\\\cos C=\sin B\end{cases};\hept{\begin{cases}\tan C=\cot B\\\cot C=\tan B\end{cases}}}\)

\(\Rightarrow\sin B=\frac{4}{5};\cos B=\frac{3}{5};\tan B=\frac{4}{3};\cot B=\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
3 tháng 9 2020 lúc 15:34

Ta có: \(\sin C=\frac{AB}{BC}=\frac{3}{5}\) 

=> \(\frac{AB}{3}=\frac{BC}{5}=k\left(k\inℕ\right)\)

=> \(\hept{\begin{cases}AB=3k\\BC=5k\end{cases}}\)

=> \(AC=\sqrt{\left(5k\right)^2-\left(3k\right)^2}=\sqrt{16k^2}=4k\)

Đến đây thì xong rồi:))

\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\) ; \(\cos B=\frac{AB}{BC}=\frac{3k}{5k}=\frac{3}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{4k}{3k}=\frac{4}{3}\) ; \(\cot B=\frac{AB}{AC}=\frac{3k}{4k}=\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
NG
Xem chi tiết
NT
15 tháng 10 2015 lúc 12:19

cotC=1/tanC = 4/3

=>\(\frac{ac}{ab}=\frac{4}{3}\)=>ac=4k , ab=3k {với k \(\ge\) 0 }

=>BC = 5k

=>sinC =\(\frac{3}{5}\)

cosC=\(\frac{4}{5}\)

tick nha

Bình luận (0)
GB
Xem chi tiết
CP
Xem chi tiết
NT
26 tháng 10 2021 lúc 20:09

\(\cos\widehat{B}=0.6\)

\(\sin\widehat{B}=0.8\)

\(\tan\widehat{B}=\dfrac{4}{3}\)

\(\cot\widehat{B}=\dfrac{3}{4}\)

Bình luận (0)
BD
Xem chi tiết
CH
1 tháng 10 2023 lúc 19:33

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

Bình luận (9)
CH
1 tháng 10 2023 lúc 20:24

a) Xét \(\Delta ABC\) vuông tại `A`

Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)

\(\Rightarrow5^2=4^2+AC^2\\ \Rightarrow AC^2=5^2-4^2\\ \Rightarrow AC^2=25-16=9\\ \Rightarrow AC=\sqrt{9}=3cm\) 

Vậy: \(AC=3cm\)

Ta có: \(CosC=\dfrac{AC}{BC}\left(tslg\right)\)

\(\Rightarrow CosC=\dfrac{3}{5}\\ \Rightarrow CosC\approx53^o\)

Vậy: Góc C khoảng \(53^o\)

Ta có: \(TanB=\dfrac{AC}{AB}\left(tslg\right)\)

\(\Rightarrow TanB=\dfrac{3}{4}\\ \Rightarrow TanB\approx37^o\)

Vậy: Góc B khoảng \(37^o\) 

_

b) Xét \(\Delta ABC\) vuông tại `A`

Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)

\(\Rightarrow10^2=5^2+AC^2\\ \Rightarrow AC^2=10^2-5^2\\\Rightarrow AC^2=100-25=75\\ \Rightarrow AC=\sqrt{75}=5\sqrt{3}cm\)

Vậy: \(AC=5\sqrt{3}cm\)

Ta có: \(SinC=\dfrac{AB}{BC}\left(tslg\right)\)

 \(\Rightarrow SinC=\dfrac{5}{10}\\ \Rightarrow30^o\)

Vậy: Góc C là \(30^o\)

Ta có: \(SinB=\dfrac{AC}{BC}\left(tslg\right)\)

\(\Rightarrow SinB=\dfrac{5\sqrt{3}}{10}\\ \Rightarrow SinB=60^o\)

Vậy: Góc B là \(60^o\).

Bình luận (2)
DT
27 tháng 10 2024 lúc 9:04

AA lai Aa

 

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 9 2018 lúc 10:09

HS tự làm

Bình luận (0)
HH
22 tháng 1 2021 lúc 20:20

A B H C 13 5

a) Áp dụng đlí Py - ta - go cho tam giác HAB ( ^H =90^o )

Ta có : \(AB^2=AH^2+BH^2\)

\(13^2=AH^2+5^2\)

\(AH^2=13^2-5^2\)

\(\Rightarrow AH=\sqrt{13^2-5^2}\)

\(\sin B=\frac{AH}{AB}=\frac{\sqrt{13^2-5^2}}{13}\approx0,923\)

Áp dụng hệ thức lượng cho tam giác ABC( ^A = 90^o ) , đường cao AH , ta có :

\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{12^2}{5}=28,8\)

=> BC = 5 + 28,8 = 33,8

\(\sin C=\frac{AB}{BC}=\frac{13}{33,8}\approx0,384\)

Vậy : \(\sin B\approx0,923\)

         \(\sin C\approx0,384\)

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
NT
28 tháng 7 2023 lúc 12:53

a: AH=căn 13^2-5^2=12

Xét ΔAHB vuông tại H có 

sin B=AH/AB=12/13=cos C

cos B=sin C=BH/AB=5/13

tan B=cot C=AH/BH=12/5

cot B=tan C=BH/AH=5/12

b: AH=căn 3*4=2*căn 3(cm)

BC=3+4=7(cm)

AB=căn 3*7=căn 21(cm)

AC=căn 4*7=2*căn 7(cm)

Xét ΔABC vuông tại A có 

sin B=cos C=AC/BC=2*căn 7/7

cos B=sin C=AB/BC=căn 21/7

tan B=cot C=2*căn 7/căn 21=2/căn 3

cot B=tan C=căn 21/2*căn 7=căn 3/2

Bình luận (0)