Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DN
Xem chi tiết
NT
6 tháng 1 2023 lúc 19:29

a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)

=>\(n\in\left\{-1;-3;5;-9\right\}\)

b: =>n-3+4 chia hết cho n-3

=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{4;2;5;1;7;-1\right\}\)

c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)

d: =>10n^2-10n+11n-11+1 chia hết cho n-1

=>\(n-1\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;0\right\}\)

Bình luận (0)
ST
Xem chi tiết
LK
20 tháng 5 2016 lúc 13:22

a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)

Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4

b) Cho n-1=0 => n=1

Sau đó thay vào biểu thức 10n2+n -10 sẽ  tìm ra n=1

Cho mình nha!!! <3

Bình luận (0)
MQ
Xem chi tiết
NT
Xem chi tiết
DE
21 tháng 10 2015 lúc 22:56

Lấy 3n^3 + 10n^2 - 5 : 3n + 1 như bình thường, cuối cùng được dư bao nhiêu thì số đó phải chia hết cho 3n + 1. Thì 3n + 1 phải thuộc tập hợp ước của số đó. Và cứ thế tìm n thôi.

Bình luận (0)
DL
Xem chi tiết
PA
Xem chi tiết
H24
23 tháng 12 2018 lúc 19:08

ta có : \(3n^3+10n^2-5⋮3n+1\)

\(\Rightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Rightarrow n\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-3⋮3n+1\)

\(\Rightarrow\left(n+3n+1\right)\left(3n+1\right)-4⋮3n+1\)

mà \(\left(4n+1\right)\left(3n+1\right)⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;\pm1\right\}\)

Bình luận (0)
H24
Xem chi tiết
TM
Xem chi tiết
KN
3 tháng 8 2016 lúc 19:49

 A = (3n^3 + 10n^2 - 5)/(3n + 1) 
A = (3n^3 + n^2 + 9n^2 + 3n - 3n - 1 -4)/(3n+1) 
A= n^2 + 3n - 1 - 4/(3n+1) 
biểu thức 3n^3 + 10n^2 - 5 chia hết cho giá trị của biểu thức 3n + 1 khi: 
3n+1 = ±1,±2, ±4 
=> n = 0,-2/3,1/3,-1,1,-5/3 
chọn giá trị nguyên: n = 0,-1,1

CHÚC BẠN HỌC TỐT

Bình luận (0)
HT
3 tháng 8 2016 lúc 20:18


\(A=\frac{\left(3n^3+10n^2-5\right)}{\left(3n+1\right)}\)
\(A=\frac{\left(3n^3+n^2+9n^2+3n-3n-1-4\right)}{\left(3n+1\right)}\)
\(A=\frac{n^2+3n-1-4}{\left(3n+1\right)}\)
Biểu thức \(3n^3+10n^2-5\)chia hết cho giá trị của biểu thức \(3n+1\) khi:
 3n+1 = ±1,±2, ±4
 \(\Rightarrow n=0;-\frac{2}{3};-\frac{1}{3};-1;-\frac{5}{3}\)
Chọn giá trị nguyên:\(n=0;-1;1\)

Bình luận (0)
BL
25 tháng 10 2017 lúc 6:05

 A = (3n^3 + 10n^2 - 5)/(3n + 1) 

A = (3n^3 + n^2 + 9n^2 + 3n - 3n - 1 -4)/(3n+1) 

A= n^2 + 3n - 1 - 4/(3n+1) 

biểu thức 3n^3 + 10n^2 - 5 chia hết cho giá trị của biểu thức 3n + 1 khi: 

3n+1 = ±1,±2, ±4 

=> n = 0,-2/3,1/3,-1,1,-5/3 

Bình luận (0)
SX
Xem chi tiết
HA
Xem chi tiết
NL
16 tháng 12 2016 lúc 22:41

Đặt tính ra, kết quả của số dư là \(-\frac{11}{3}n-5\)

Để biểu thức \(3n^3+10n^2-5\)chia hết cho biểu thức \(3n-1\)thì:

\(\frac{-11}{3}n-5=0\)

\(=>\frac{-11}{3}n=5\)

\(=>n=\frac{-15}{11}\)

Bình luận (0)