Cho a, b, c, d là các chữ số thỏa mãn:
a b+ c a= d a
a b- c a= a
Tìm giá trị của d.
cho 5 số nguyên a,b,c,d,e thỏa mãn:
a+b+c+d+e=0
a+b=c+d=d+e=-2
tìm giá trị:c*d*e
`a+b=c+d=-2` thay vào `a+b+c+d+e=0` ta có:
`e-4=0=>e=4`
Mà `d+e=-2=>d=-6`
Mà `c+d=-2`
`=>c=-2-d=4`
`=>c.d.e=4.4.(-6)=-96`
\(a+b=c+d=d+e=-2\)
\(a+b+c+d+e=0\)
\(\Leftrightarrow-2+\left(-2\right)+e=0\Leftrightarrow e=4\)
\(d+e=0\Leftrightarrow-2+d=0\Leftrightarrow d=2\)
\(c+d=-2\Leftrightarrow c+2=-2\Leftrightarrow c=-4\)
\(\Rightarrow c.d.e=-4.2.4=-32\)
cho a , b ,c ,d là các số ngyên dương thỏa mãn a + b = c + d = 25 . Tính giá trị lớn nhất của M = c/b + d/a
Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Bài 1 : Tìm tất cả các số nguyên dương n biết n + tổng các chữ số của nó = 2013
Bài 2 : Cho các số nguyên dương a, b, c, d, e, g thỏa mãn:a2 + b2 + c2 = d2 + e2 + g2. Hỏi a + b + c + d + e + g là hợp số hay số nguyên tố?
Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11
a=0 => b=11(loại)
a=1 => b=0 => n=2010
với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n ≥ 2013-28=1985
xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103
do n ≥ 1985 => a ≥ 8
a=8 => b=7,5 (loại)
a=9 => b=2 => n=1992
Bài 2: Chắc là hợp số :D
từ \(a^2+b^2+c^2=e^2+f^2+d^2\)
=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)
=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\) ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)
=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)
=>a+b+c ≡ d+e+f (mod 2)
=> a+b+c+d+e+f chia hết cho 2
cho 6 số nguyên dương a,b,c,d,m,n thỏa mãn:
a<b<c<d<m<n
chứng minh rằng \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)
tứ giác ABCD có các góc thỏa mãn:A/B/C/D=1/2/2/3 khi đó số đo các góc A,B,C,D theo thứ tự đó là
A/1=B/2=C/2=D/3=A+B+C+D/1+2+2+3=360/8=45
=>A=45 ,B=C=90,D=135
K NHAN
tích ngay cho bạn trả lời chi tiết
Cho a;b;c;d là các số nguyên dương thỏa mãn : a+b = c+d =1000
Tìm giá trị lớn nhất của \(\frac{a}{c}+\frac{b}{d}\)
Cho các số thực dương a,b,c thỏa mãn:a+b+c=\(\frac{1}{abc}\)
Tìm giá trị nhỏ nhất của biểu thức P=(a+b)(a+c)
Tìm các số nguyên dương a,b,c,d phân biệt thỏa mãn:
a+\(\dfrac{2\cdot b}{b+\dfrac{c}{c+\dfrac{d}{d+1}}}\)
Bạn nào làm nhanh mình tick cho.
Dấu ở giữa 2 và b là dấu nhân nhé!